
ELF Object File Format
Version 4.3 DRAFT

Xinuos, Inc.

Sep 04, 2025

Copyright © 1997, 1998, 1999, 2000, 2001 The Santa Cruz Operation, Inc. All rights reserved.Copyright © 2002 Caldera International. All rights reserved.Copyright © 2003-2010 The SCO Group. All rights reserved.Copyright © 2011-2014, 2023–2025 Xinuos Inc. All rights reserved.

Contents

Foreword iii

1 Introduction 11.1 File Format . 11.2 Data Representation . 21.3 Extensibility . 31.4 Required Features . 3
2 ELF Header 52.1 Contents of the ELF Header . 52.2 ELF Identification . 82.3 Data Encoding . 10
3 Sections 113.1 Special Section Indexes . 113.2 Section Header Table Entry . 133.3 Section Type . 143.4 Section Flags . 163.5 The sh_link and sh_info Fields . 183.6 First Section Header Table Entry . 193.7 Compressed Sections . 193.8 Rules for Linking Unrecognized Sections . 213.9 Section Groups . 213.10 Special Sections . 23
4 String Table 27

5 Symbol Table 295.1 Symbol Table Entry . 295.2 Symbol Binding . 305.3 Symbol Type . 325.4 Symbol Visibility . 335.5 Section Index . 355.6 First Symbol Table Entry . 355.7 Symbol Value . 35
6 Relocation 376.1 Relocation Entry . 376.2 Relative Relocation Table . 39
7 Program Loading 417.1 Program Header Entry . 417.2 Segment Types . 42

i

7.3 Base Address . 447.4 Segment Permissions . 447.5 Segment Contents . 457.6 Note Sections . 467.7 Thread-Local Storage . 49
8 Dynamic Linking 518.1 Program Interpreter . 518.2 Dynamic Linker . 528.3 Dynamic Section . 538.4 Shared Object Dependencies . 598.5 Hash Table . 618.6 Initialization and Termination Functions . 62
A Assigned Machine Values 67

B Assigned OSABI Values 73

C Revision History 75

ii

Foreword

The SVR4 ABI

The System V Release 4 (SVR4) Application Binary Interface (ABI) is composed of several components,ranging from a high-level specification of the programming interface to the low-level machine details.The ABI contains the following chapters:
• Chapter 1: Introduction.
• Chapter 2: Software Installation covers installation media, and physical distribution formats.
• Chapter 3: Low Level System Information. This processor-dependent chapter covers the ma-chine details, data representation, calling conventions, parameter passing, register usage, stackframe layout, stack unwinding, and dynamic linking conventions.
• Chapter 4: Object Files covers the ELF object file format and relocatable objects.
• Chapter 5: Program Loading and Dynamic Linking covers the ELF object file format, and exe-cutable and shared objects.
• Chapter 6: Libraries covers the processor-independent API available to the program, and theprocessor-specific binding of the API to the binary interface. It provides structure layouts, val-ues for symbolic contants, and other implementation-specific details left unspecified by the APIdocument.
• Chapter 7: Development Environment covers the development and packaging tools.
• Chapter 8: Execution Environment covers the runtime environment, file system structure, andsystem services available to the running application.

The SVR4 ABI is published in two parts: a generic ABI document (gABI), which covers the machine-independent components of the ABI, and a processor-specific ABI supplement (psABI), published sep-arately for each machine architecture supported by the SVR4 ABI.
The SVR4 gABI and several other ABIs share ELF as a common object file format, and the official speci-fication of the ELF object file format is published here. This specification replaces thematerial that wascontained in Chapters 4 and 5 of the SVR4 gABI document.
The most up-to-date version of this document is available at gabi.xinuos.com.

iii

https://gabi.xinuos.com

ELF Object File Format

iv

Chapter 1

Introduction

There are three main types of object files.
• A relocatable file holds code and data suitable for linking with other object files to create an exe-cutable or a shared object file.
• An executable file holds a program suitable for execution; the file specifies how the system (e.g.,
exec()) creates a program’s process image.

• A shared object file holds code and data suitable for linking in two contexts. First, the link editorprocesses the shared object file with other relocatable and shared object files to create anotherobject file. Second, the dynamic linker combines it with an executable file and other shared ob-jects to create a process image.
Created by the assembler and link editor, object files are binary representations of programs intendedto be executed directly on a processor. Programs that require other abstract machines, such as shellscripts, are excluded.

1.1 File Format

Object files participate in program linking (building a program) and program execution (running a pro-gram). For convenience and efficiency, the object file format provides parallel views of a file’s contents,reflecting the differing needs of those activities. Figure 1.1 shows an object file’s organization.
An ELF header resides at the beginning and holds a “road map” describing the file’s organization. Sec-
tions hold the bulk of object file information for the linking view: instructions, data, symbol table, re-location information, and so on. Descriptions of special sections appear later. Chapter 7, ProgramLoading, discusses segments and the program execution view of the file.
A program header table tells the system how to create a process image. Files used to build a processimage (execute a program) must have a program header table; relocatable files do not need one. A
section header table contains information describing the file‘s sections. Every section has an entry inthe table; each entry gives information such as the section name, the section size, and so on. Filesused during linking must have a section header table; other object files may or may not have one.

1

ELF Object File Format

ELF Header

Program Header Table optional

Section Header Table required

Section 1

Section 2

Section 3

…

ELF Header

Program Header Table required

Section Header Table optional

Segment 1

Segment 2

Segment 3

…

(a) Linking View (b) Execution View

Figure 1.1: ELF Object File Format

ò Note

Although Figure 1.1 shows the programheader table immediately after the ELF header, and the sec-tion header table following the sections, actual files may differ. Moreover, sections and segmentshave no specified order. Only the ELF header has a fixed position in the file.

1.2 Data Representation

As described here, the object file format supports various processors with 8-bit bytes and either 32-bitor 64-bit architectures. Nevertheless, it is intended to be extensible to larger (or smaller) architectures.Object files therefore represent some control data with amachine-independent format, making it pos-sible to identify object files and interpret their contents in a common way. Remaining data in an objectfile use the encoding of the target processor, regardless of the machine on which the file was created.
Table 1.1: 32-Bit Data Types

Name Size Alignment Purpose
Elf32_Addr 4 4 Unsigned program address
Elf32_Off 4 4 Unsigned file offset
Elf32_Half 2 2 Unsigned medium integer
Elf32_Word 4 4 Unsigned integer
Elf32_Sword 4 4 Signed integer
unsigned char 1 1 Unsigned small integer

2 Chapter 1. Introduction

ELF Object File Format

Table 1.2: 64-Bit Data Types
Name Size Alignment Purpose
Elf64_Addr 8 8 Unsigned program address
Elf64_Off 8 8 Unsigned file offset
Elf64_Half 2 2 Unsigned medium integer
Elf64_Word 4 4 Unsigned integer
Elf64_Sword 4 4 Signed integer
Elf64_Xword 8 8 Unsigned long integer
Elf64_Sxword 8 8 Signed long integer
unsigned char 1 1 Unsigned small integer

All data structures that the object file format defines follow the “natural” size and alignment guidelinesfor the relevant class. If necessary, data structures contain explicit padding to ensure 8-byte alignmentfor 8-byte objects, 4-byte alignment for 4-byte objects, to force structure sizes to a multiple of 4 or 8,and so forth. Data also have suitable alignment from the beginning of the file. Thus, for example, astructure containing an Elf32_Addrmember will be aligned on a 4-byte boundary within the file.
For portability reasons, ELF uses no bit-fields.

1.3 Extensibility

The ELF header contains a version number, which can be incremented for major changes to the objectfile format. ELF has been designed, however, so that such major changes are rare, and the file formatcan be extended in several ways that do not require a version number change.
Most object file structures are contained within sections (see Section 3, Sections), and are designatedwith special section types. Additional control structures can be defined by defining new section types.
Many control structures have fields with enumerated values, and the standard sets aside certainranges of values for these fields for implementation-specific uses. These extensions can fall into one oftwo classes: processor-specific extensions, which depend on the machine architecture (see e_machinein Section 2.1, Contents of the ELF Header); and OSABI-specific extensions, which depend on the op-erating system and psABI (see EI_OSABI in Section 2.2, ELF Identification).
ELF assigns meaning to fields and constant values, throughout the specification. Any unassigned bitsor values not explicitly delegated to the psABI or OSABI are reserved to the ELF standard for potentialfuture use. Implementations must not assign meaning, or otherwise make use of, any unassigneditems.
Some object file control structures can grow, because the ELF header contains their actual sizes. If theobject file format changes, a programmay encounter control structures that are larger or smaller thanexpected. Programs might therefore ignore “extra” information. The treatment of “missing” informa-tion depends on context and will be specified when and if extensions are defined. This form of exten-sion is reserved for future revisions of the ELF standard, and must not be used for implementation-specific purposes.

1.4 Required Features

The ELF standard assigns meaning to a number of features, such as special sections, symbol types,and program header entries, but an implementation is not required to support all features defined inthis specification. The psABI supplement should designate which features are required for a particularimplementation.
1.3. Extensibility 3

ELF Object File Format

4 Chapter 1. Introduction

Chapter 2

ELF Header

The ELF header resides at the beginning of an ELF file. It identifies the file as an ELF file and containsthe information necessary for interpreting the contents of the file and locating the other componentsof the file.

2.1 Contents of the ELF Header

Listing 2.1: ELF Header
#define EI_NIDENT 16

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

} Elf32_Ehdr;

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf64_Half e_type;
Elf64_Half e_machine;
Elf64_Word e_version;
Elf64_Addr e_entry;
Elf64_Off e_phoff;
Elf64_Off e_shoff;
Elf64_Word e_flags;

(continues on next page)

5

ELF Object File Format

(continued from previous page)
Elf64_Half e_ehsize;
Elf64_Half e_phentsize;
Elf64_Half e_phnum;
Elf64_Half e_shentsize;
Elf64_Half e_shnum;
Elf64_Half e_shstrndx;

} Elf64_Ehdr;

e_identThe initial bytes mark the file as an object file and provide machine-independent data with whichto decode and interpret the file’s contents. Complete descriptions appear below in Section 2.2,ELF Identification.
e_typeThis member identifies the object file type.

Table 2.1: Object File Types
Name Value Meaning
ET_NONE 0 No file type
ET_REL 1 Relocatable file
ET_EXEC 2 Executable file
ET_DYN 3 Shared object file
ET_CORE 4 Core file
ET_LOOS 0xfe00 Operating system-specific
ET_HIOS 0xfeff Operating system-specific
ET_LOPROC 0xff00 Processor-specific
ET_HIPROC 0xffff Processor-specific

Although the core file contents are unspecified, type ET_CORE is reserved to mark the file. Valuesfrom ET_LOOS through ET_HIOS (inclusive) are reserved for operating system-specific semantics.Values from ET_LOPROC through ET_HIPROC (inclusive) are reserved for processor-specific seman-tics. If meanings are specified, the psABI supplement explains them. Other values are reservedand will be assigned to new object file types as necessary.
e_machineThis member’s value specifies the required architecture for an individual file.

See Appendix A (page 67) for currently-assigned values for this field. Other values are reservedand will be assigned to new machines as necessary.
Processor-specific ELF names use the machine name to distinguish them. For example, the flagsmentioned below use the prefix EF_; a flag named WIDGET for the EM_XYZmachine would be called
EF_XYZ_WIDGET.

e_versionThis member identifies the object file version.
Table 2.2: Object File Version Numbers
Name Value Meaning
EV_NONE 0 Invalid version
EV_CURRENT 1 Current version

6 Chapter 2. ELF Header

ELF Object File Format

The value 1 signifies the original file format; extensions will create new versions with higher num-bers. Although the value of EV_CURRENT is shown as 1 in the previous table, it will change as nec-essary to reflect the current version number.
e_entryThis member gives the virtual address to which the system first transfers control, thus startingthe process. If the file has no associated entry point, this member holds zero.
e_phoffThis member holds the program header table’s file offset in bytes. If the file has no programheader table, this member holds zero.
e_shoffThis member holds the section header table’s file offset in bytes. If the file has no section headertable, this member holds zero.
e_flagsThis member holds processor-specific flags associated with the file. Flag names take the form

EF_machine_flag.
e_ehsizeThis member holds the ELF header’s size in bytes.
e_phentsizeThis member holds the size in bytes of one entry in the file’s program header table; all entriesare the same size.
e_phnumThis member holds the number of entries in the program header table. Thus the product of

e_phentsize and e_phnum gives the table’s size in bytes. If a file has no program header table,
e_phnum holds the value zero.

e_shentsizeThis member holds a section header’s size in bytes. A section header is one entry in the sectionheader table; all entries are the same size.
e_shnumThis member holds the number of entries in the section header table. Thus the product of

e_shentsize and e_shnum gives the section header table’s size in bytes. If a file has no sectionheader table, e_shnum holds the value zero.
If the number of sections is greater than or equal to SHN_LORESERVE (0xff00), this member has thevalue zero and the actual number of section header table entries is contained in the sh_size fieldof the section header at index 0. (Otherwise, the sh_sizemember of the initial entry contains 0.)

e_shstrndxThis member holds the section header table index of the entry associated with the section namestring table. If the file has no section name string table, this member holds the value SHN_UNDEF.See Chapter 3, Sections, and Chapter 4, String Table, for more information.
If the section name string table section index is greater than or equal to SHN_LORESERVE (0xff00),this member has the value SHN_XINDEX (0xffff) and the actual index of the section name stringtable section is contained in the sh_link field of the section header at index 0. (Otherwise, the
sh_linkmember of the initial entry contains 0.)

2.1. Contents of the ELF Header 7

ELF Object File Format

2.2 ELF Identification

As mentioned above, ELF provides an object file framework to support multiple processors, multipledata encodings, and multiple classes of machines. To support this object file family, the initial bytesof the file specify how to interpret the file, independent of the processor on which the inquiry is madeand independent of the file’s remaining contents.
The initial bytes of an ELF header (and an object file) correspond to the e_identmember.

Table 2.3: e_ident[] Identification Indexes
Name Value Purpose
EI_MAG0 0 File identification
EI_MAG1 1 File identification
EI_MAG2 2 File identification
EI_MAG3 3 File identification
EI_CLASS 4 File class
EI_DATA 5 Data encoding
EI_VERSION 6 File version
EI_OSABI 7 Operating system/ABI identification
EI_ABIVERSION 8 ABI version
EI_PAD 9 Start of padding bytes
EI_NIDENT 16 Size of e_ident[]

These indexes access bytes that hold the following values.
EI_MAG0 to EI_MAG3A file’s first 4 bytes hold a “magic number,” identifying the file as an ELF object file.

Table 2.4: ELF Magic Numbers
Name Value Position
ELFMAG0 0x7f e_ident[EI_MAG0]
ELFMAG1 ’E’ e_ident[EI_MAG1]
ELFMAG2 ’L’ e_ident[EI_MAG2]
ELFMAG3 ’F’ e_ident[EI_MAG3]

EI_CLASSThe next byte, e_ident[EI_CLASS], identifies the file’s class, or capacity.
Table 2.5: ELF Class

Name Value Meaning
ELFCLASSNONE 0 Invalid class
ELFCLASS32 1 32-bit objects
ELFCLASS64 2 64-bit objects

The file format is designed to be portable among machines of various sizes, without imposingthe sizes of the largest machine on the smallest. The class of the file defines the basic types usedby the data structures of the object file container itself. The data contained in object file sectionsmay follow a different programming model. If so, the psABI supplement describes the modelused.
8 Chapter 2. ELF Header

ELF Object File Format

Class ELFCLASS32 supports machines with 32-bit architectures. It uses the basic types defined inTable 1.1 in Section 1.2, Data Representation.
Class ELFCLASS64 supports machines with 64-bit architectures. It uses the basic types defined inTable 1.2 in Section 1.2, Data Representation.
Other classes will be defined as necessary, with different basic types and sizes for object file data.

EI_DATAByte e_ident[EI_DATA] specifies the encoding of both the data structures used by object file con-tainer and data contained in object file sections. The following encodings are currently defined.
Table 2.6: ELF Data Encoding

Name Value Meaning
ELFDATANONE 0 Invalid data encoding
ELFDATA2LSB 1 See below
ELFDATA2MSB 2 See below

Other values are reserved and will be assigned to new encodings as necessary.
ò Note

Primarily for the convenience of code that looks at the ELF file at runtime, the ELF data struc-tures are intended to have the same byte order as that of the running program.
EI_VERSIONByte e_ident[EI_VERSION] specifies the ELF header version number. Currently, this value must be

EV_CURRENT, as explained above for e_version.
EI_OSABIByte e_ident[EI_OSABI] identifies the OS- or ABI-specific ELF extensions used by this file. Somefields in other ELF structures have flags and values that have operating system and/or ABI specificmeanings; the interpretation of those fields is determined by the value of this byte. If the objectfile does not use any extensions, it is recommended that this byte be set to 0. If the value for thisbyte is 64 through 255, its meaning depends on the value of the e_machine header member. ThepsABI supplement for an architecture can define its own associated set of values for this byte inthis range. If the psABI supplement does not specify a set of values, one of the values defined in

Appendix B (page 73) shall be used, where 0 (ELFOSABI_NONE) can also be taken tomean unspecified.
EI_ABIVERSIONByte e_ident[EI_ABIVERSION] identifies the version of the ABI to which the object is targeted. Thisfield is used to distinguish among incompatible versions of an ABI. The interpretation of this ver-sion number is dependent on the ABI identified by the EI_OSABI field. If no values are specified forthe EI_OSABI field by the psABI supplement or no version values are specified for the ABI deter-mined by a particular value of the EI_OSABI byte, the value 0 shall be used for the EI_ABIVERSIONbyte; it indicates unspecified.
EI_PADThis value marks the beginning of the unused bytes in e_ident. These bytes are reserved and setto zero; programs that read object files should ignore them. The value of EI_PAD will change inthe future if currently unused bytes are given meanings.

2.2. ELF Identification 9

ELF Object File Format

2.3 Data Encoding

A file’s data encoding specifies how to interpret the basic objects in a file. Class ELFCLASS32 files useobjects that occupy 1, 2, and 4 bytes. Class ELFCLASS64 files use objects that occupy 1, 2, 4, and 8 bytes.Under the defined encodings, objects are represented as shown below.
Encoding ELFDATA2LSB specifies 2’s complement values, with the least significant byte occupying thelowest address. Encoding ELFDATA2MSB specifies 2’s complement values, with the most significant byteoccupying the lowest address. See Figure 2.1.

01
0

02 01
0 1

04 03 02 01
0 1 2 3

08 07 06 05 04 03 02 01 0x0102030405060708

0x01020304

0x0102

0x01

0 1 2 3 4 5 6 7

01
0

01 02
0 1

01 02 03 04
0 1 2 3

01 02 03 04 05 06 07 08
0 1 2 3 4 5 6 7

(a) Data Encoding ELFDATA2LSB
Least-Significant Byte stored in byte 0

(b) Data Encoding ELFDATA2MSB
Most-Significant Byte stored in byte 0

Bytes BytesValue

Figure 2.1: Data Encodings for 8-, 16-, 32-, and 64-bit Values

10 Chapter 2. ELF Header

Chapter 3

Sections

An object file’s section header table lets one locate all the file’s sections. The section header table isan array of Elf32_Shdr or Elf64_Shdr structures as described below. A section header table index is asubscript into this array. The ELF header’s e_shoffmember gives the byte offset from the beginning ofthe file to the section header table. e_shnum normally tells how many entries the section header tablecontains. e_shentsize gives the size in bytes of each entry.
Sections contain all information in an object file except the ELF header, the program header table, andthe section header table. Moreover, object files’ sections satisfy several conditions.

• Every section in an object file has exactly one section header describing it. Section headers mayexist that do not have a section.
• Each section occupies one contiguous (possibly empty) sequence of bytes within a file.
• Sections in a file may not overlap. No byte in a file resides in more than one section.
• An object file may have inactive space. The various headers and the sections might not “cover”every byte in an object file. The contents of the inactive data are unspecified.

ò Note

A common example of inactive space is the padding placed between sections to ensure properalignment for the subsequent section.
If the number of sections is greater than or equal to SHN_LORESERVE (0xff00), e_shnum has the value
SHN_UNDEF (0) and the actual number of section header table entries is contained in the sh_size field ofthe section header at index 0 (otherwise, the sh_sizemember of the initial entry contains 0).

3.1 Special Section Indexes

Some section header table indexes are reserved in contexts where index size is restricted, for example,the st_shndx member of a symbol table entry and the e_shnum and e_shstrndx members of the ELFheader. In such contexts, the reserved values do not represent actual sections in the object file. Alsoin such contexts, an escape value indicates that the actual section index is to be found elsewhere, in alarger field.

11

ELF Object File Format

Table 3.1: Special Section Indexes
Name Value
SHN_UNDEF 0
SHN_LORESERVE 0xff00
SHN_LOPROC 0xff00
SHN_HIPROC 0xff1f
SHN_LOOS 0xff20
SHN_HIOS 0xff3f
SHN_ABS 0xfff1
SHN_COMMON 0xfff2
SHN_XINDEX 0xffff
SHN_HIRESERVE 0xffff

SHN_UNDEFThis value marks an undefined, missing, irrelevant, or otherwise meaningless section reference.For example, a symbol “defined” relative to section number SHN_UNDEF is an undefined symbol.
ò Note

Although index 0 is reserved as the undefined value, the section header table contains anentry for index 0. If the e_shnum member of the ELF header says a file has 6 entries in thesection header table, they have the indexes 0 through 5. The contents of the initial entry arespecified in Section 3.6, First Section Header Table Entry.
SHN_LORESERVEThis value specifies the lower bound of the range of reserved indexes.
SHN_LOPROC through SHN_HIPROCValues in this inclusive range are reserved for processor-specific semantics.
SHN_LOOS through SHN_HIOSValues in this inclusive range are reserved for operating system-specific semantics.
SHN_ABSThis value specifies absolute values for the corresponding reference. For example, symbols de-fined relative to section number SHN_ABS have absolute values and are not affected by relocation.
SHN_COMMONSymbols defined relative to this section are common symbols, such as FORTRAN COMMON or unal-located C external variables.
SHN_XINDEXThis value is an escape value. It indicates that the actual section header index is too large to fitin the containing field and is to be found in another location (specific to the structure where itappears).
SHN_HIRESERVEThis value specifies the upper bound of the range of reserved indexes. The system reservesindexes between SHN_LORESERVE and SHN_HIRESERVE, inclusive; the values do not reference thesection header table. The section header table does not contain entries for the reserved indexes.

12 Chapter 3. Sections

ELF Object File Format

3.2 Section Header Table Entry

A section header has the following structure.
Listing 3.1: Section Header

typedef struct {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

} Elf32_Shdr;

typedef struct {
Elf64_Word sh_name;
Elf64_Word sh_type;
Elf64_Xword sh_flags;
Elf64_Addr sh_addr;
Elf64_Off sh_offset;
Elf64_Xword sh_size;
Elf64_Word sh_link;
Elf64_Word sh_info;
Elf64_Xword sh_addralign;
Elf64_Xword sh_entsize;

} Elf64_Shdr;

sh_nameThismember specifies the name of the section. Its value is an index into the section header stringtable section (see Chapter 4, String Table), giving the location of a null-terminated string.
sh_typeThis member categorizes the section’s contents and semantics. Section types and their descrip-tions appear below.
sh_flagsSections support 1-bit flags that describemiscellaneous attributes. Flag definitions appear below.
sh_addrIf the section will appear in the memory image of a process, this member gives the address atwhich the section’s first byte should reside. Otherwise, the member contains 0.
sh_offsetThis member’s value gives the byte offset from the beginning of the file to the first byte in thesection. One section type, SHT_NOBITS described below, occupies no space in the file, and its

sh_offsetmember locates the conceptual placement in the file.
sh_sizeThis member gives the section’s size in bytes. Unless the section type is SHT_NOBITS, the sectionoccupies sh_size bytes in the file. A section of type SHT_NOBITS may have a non-zero size, but itoccupies no space in the file.

3.2. Section Header Table Entry 13

ELF Object File Format

sh_linkThis member holds a section header table index link, whose interpretation depends on the sec-tion type. (See Section 3.5, The sh_link and sh_info Fields.)
sh_infoThis member holds extra information, whose interpretation depends on the section type. (SeeSection 3.5, The sh_link and sh_info Fields.) If the sh_flags field for this section header includesthe attribute SHF_INFO_LINK, then this member represents a section header table index.
sh_addralignSome sections have address alignment constraints. For example, if a section holds a doubleword,the systemmust ensure doubleword alignment for the entire section. The value of sh_addrmustbe congruent to 0, modulo the value of sh_addralign. Currently, only 0 and positive integralpowers of two are allowed. Values 0 and 1 mean the section has no alignment constraints.
sh_entsizeSome sections hold a table of fixed-size entries, such as a symbol table. For such a section, thismember gives the size in bytes of each entry. Themember contains 0 if the section does not holda table of fixed-size entries.

3.3 Section Type

A section header’s sh_typemember specifies the section’s semantics.
Table 3.2: Section Types, sh_type
Name Value
SHT_NULL 0
SHT_PROGBITS 1
SHT_SYMTAB 2
SHT_STRTAB 3
SHT_RELA 4
SHT_HASH 5
SHT_DYNAMIC 6
SHT_NOTE 7
SHT_NOBITS 8
SHT_REL 9
SHT_SHLIB 10
SHT_DYNSYM 11
SHT_INIT_ARRAY 14
SHT_FINI_ARRAY 15
SHT_PREINIT_ARRAY 16
SHT_GROUP 17
SHT_SYMTAB_SHNDX 18
SHT_RELR 19
SHT_LOOS 0x60000000
SHT_HIOS 0x6fffffff
SHT_LOPROC 0x70000000
SHT_HIPROC 0x7fffffff
SHT_LOUSER 0x80000000
SHT_HIUSER 0xffffffff

SHT_NULLThis value marks the section header as inactive; it does not have an associated section. Other
14 Chapter 3. Sections

ELF Object File Format

members of the section header have undefined values.
SHT_PROGBITSThe section holds information defined by the program, whose format and meaning are deter-mined solely by the program.
SHT_SYMTAB and SHT_DYNSYMThese sections hold a symbol table. Currently, an object file may have only one section of eachtype, but this restriction may be relaxed in the future. Typically, SHT_SYMTAB provides symbolsfor link editing, though it may also be used for dynamic linking. As a complete symbol table, itmay contain many symbols unnecessary for dynamic linking. Consequently, an object file mayalso contain a SHT_DYNSYM section, which holds a minimal set of dynamic linking symbols, to savespace. See “Symbol Table” below for details.
SHT_STRTABThe section holds a string table. An object filemayhavemultiple string table sections. SeeChapter4, String Table, for details.
SHT_RELAThe section holds relocation entries with explicit addends, such as type Elf32_Rela for the 32-bitclass of object files or type Elf64_Rela for the 64-bit class of object files. An object file may havemultiple relocation sections. See Chapter 6, Relocation, for details.
SHT_HASHThe section holds a symbol hash table. Currently, an object file may have only one hash table,but this restriction may be relaxed in the future. See Section 8.5, Hash Table, for details.
SHT_DYNAMICThe section holds information for dynamic linking. Currently, an object file may have only one dy-namic section, but this restrictionmay be relaxed in the future. See Section 8.3, Dynamic Section,for details.
SHT_NOTEThe section holds information that marks the file in some way. See Section 7.6, Note Sections,for details.
SHT_NOBITSA section of this type occupies no space in the file but otherwise resembles SHT_PROGBITS. Al-though this section contains no bytes, the sh_offsetmember contains the conceptual file offset.
SHT_RELThe section holds relocation entries without explicit addends, such as type Elf32_Rel for the 32-bit class of object files or type Elf64_Rel for the 64-bit class of object files. An object file may havemultiple relocation sections. See Chapter 6, Relocation, for details.
SHT_SHLIBThis section type is reserved but has unspecified semantics.
SHT_INIT_ARRAYThis section contains an array of pointers to initialization functions, as described in Section 8.6,Initialization and Termination Functions. Each pointer in the array is taken as a parameterlessprocedure with a void return.
SHT_FINI_ARRAYThis section contains an array of pointers to termination functions, as described in Section 8.6,Initialization and Termination Functions. Each pointer in the array is taken as a parameterlessprocedure with a void return.
SHT_PREINIT_ARRAYThis section contains an array of pointers to functions that are invoked before all other initializa-

3.3. Section Type 15

ELF Object File Format

tion functions, as described in Section 8.6, Initialization and Termination Functions. Each pointerin the array is taken as a parameterless procedure with a void return.
SHT_GROUPThis section defines a section group. A section group is a set of sections that are related and thatmust be treated specially by the linker (see below for further details). Sections of type SHT_GROUPmay appear only in relocatable objects (objects with the ELF header e_typemember set to ET_REL).The section header table entry for a group sectionmust appear in the section header table beforethe entries for any of the sections that are members of the group.
SHT_SYMTAB_SHNDXThis section is associated with a symbol table section and is required if any of the section headerindexes referenced by that symbol table contain the escape value SHN_XINDEX. The section is anarray of Elf32_Word/Elf64_Word values. Each value corresponds one to one with a symbol tableentry and appear in the same order as those entries. The values represent the section headerindexes against which the symbol table entries are defined. Only if the corresponding symboltable entry’s st_shndx field contains the escape value SHN_XINDEX will the matching word hold theactual section header index; otherwise, the entry must be SHN_UNDEF (0).
SHT_RELRThe section holds an array of relocation entries, used to encode relative relocations that do not re-quire explicit addends or other information. Array elements are of type Elf32_Relr for ELFCLASS32objects, and Elf64_Relr for ELFCLASS64objects. SHT_RELR sections are for dynamic linking, andmayonly appear in object files of type ET_EXEC or ET_DYN. An object file may have multiple relocationsections. See Chapter 6, Relocation for details.
SHT_LOOS through SHT_HIOSValues in this inclusive range are reserved for operating system-specific semantics.
SHT_LOPROC through SHT_HIPROCValues in this inclusive range are reserved for processor-specific semantics.
SHT_LOUSERThis value specifies the lower bound of the range of indexes reserved for application programs.
SHT_HIUSERThis value specifies the upper bound of the range of indexes reserved for application programs.Section types between SHT_LOUSER and SHT_HIUSER may be used by the application, without con-flicting with current or future system-defined section types.
Other section type values are reserved.

3.4 Section Flags

A section header’s sh_flags member holds 1-bit flags that describe the section’s attributes. Definedvalues appear in the following table; other values are reserved.

16 Chapter 3. Sections

ELF Object File Format

Table 3.3: Section Attribute Flags
Name Value
SHF_WRITE 0x1
SHF_ALLOC 0x2
SHF_EXECINSTR 0x4
SHF_MERGE 0x10
SHF_STRINGS 0x20
SHF_INFO_LINK 0x40
SHF_LINK_ORDER 0x80
SHF_OS_NONCONFORMING 0x100
SHF_GROUP 0x200
SHF_TLS 0x400
SHF_COMPRESSED 0x800
SHF_MASKOS 0x0ff00000
SHF_MASKPROC 0xf0000000

If a flag bit is set in sh_flags, the attribute is “on” for the section. Otherwise, the attribute is “off” ordoes not apply. Undefined attributes are set to zero.
SHF_WRITEThe section contains data that should be writable during process execution.
SHF_ALLOCThe section occupies memory during process execution. Some control sections do not reside inthe memory image of an object file; this attribute is off for those sections.
SHF_EXECINSTRThe section contains executable machine instructions.
SHF_MERGEThe data in the sectionmaybemerged to eliminate duplication. Unless the SHF_STRINGSflag is alsoset, the data elements in the section are of a uniform size. The size of each element is specified inthe section header’s sh_entsize field. If the SHF_STRINGS flag is also set, the data elements consistof null-terminated character strings. The size of each character is specified in the section header’s

sh_entsize field.
Each element in the section is compared against other elements in sections with the same name,type and flags. Elements that would have identical values at program run-time may be merged.Relocations referencing elements of such sections must be resolved to the merged locations ofthe referenced values. Note that any relocatable values, including values that would result inrun-time relocations, must be analyzed to determine whether the run-time values would actuallybe identical. An ABI-conforming object file may not depend on specific elements being merged,and an ABI-conforming link editor may choose not to merge specific elements.

SHF_STRINGSThe data elements in the section consist of null-terminated character strings. The size of eachcharacter is specified in the section header’s sh_entsize field.
SHF_INFO_LINKThe sh_info field of this section header holds a section header table index.
SHF_LINK_ORDERThis flag adds special ordering requirements for link editors. The requirements apply to the ref-erenced section identified by the sh_link field of this section’s header. If this section is combinedwith other sections in the output file, the section must appear in the same relative order with re-

3.4. Section Flags 17

ELF Object File Format

spect to those sections, as the referenced section appears with respect to sections the referencedsection is combined with.
ò Note

A typical use of this flag is to build a table that references text or data sections in addressorder.
In addition to adding ordering requirements, SHF_LINK_ORDER indicates that the section containsmetadata describing the referenced section. When performing unused section elimination, thelink editor should ensure that both the section and the referenced section are retained or dis-carded together. Furthermore, relocations from this section into the referenced section shouldnot be taken as evidence that the referenced section should be retained.

SHF_OS_NONCONFORMINGThis section requires special OS-specific processing (beyond the standard linking rules) to avoidincorrect behavior. If this section has either an sh_type value or contains sh_flags bits in the OS-specific ranges for those fields, and a link editor processing this section does not recognize thosevalues, then the link editor should reject the object file containing this section with an error.
SHF_GROUPThis section is a member (perhaps the only one) of a section group. The section must be refer-enced by a section of type SHT_GROUP. The SHF_GROUP flag may be set only for sections containedin relocatable objects (objects with the ELF header e_type member set to ET_REL). See below forfurther details.
SHF_TLSThis section holds Thread-Local Storage, meaning that each separate execution flow has its owndistinct instance of this data. Implementations need not support this flag.
SHF_COMPRESSEDThis flag identifies a section containing compressed data. In ET_EXEC and ET_DYNfiles, SHF_COMPRESSED cannot be used in conjunction with SHF_ALLOC. In addition,SHF_COMPRESSED cannot be applied to sections of type SHT_NOBITS. See Section 3.7, Com-pressed Sections, below.
SHF_MASKOSAll bits included in this mask are reserved for operating system-specific semantics.
SHF_MASKPROCAll bits included in this mask are reserved for processor-specific semantics. If meanings are spec-ified, the psABI supplement explains them.

3.5 The sh_link and sh_info Fields

Two members in the section header, sh_link and sh_info, hold special information, depending onsection type.

18 Chapter 3. Sections

ELF Object File Format

Table 3.4: sh_link and sh_info Interpretation
sh_type sh_link sh_info

SHT_DYNAMIC The section header index ofthe string table used by entriesin the section.
0

SHT_HASH The section header index ofthe symbol table to which thehash table applies.
0

SHT_REL
SHT_RELA

The section header index ofthe associated symbol table. The section header index ofthe section to which therelocation applies.
SHT_SYMTAB
SHT_DYNSYM

The section header index ofthe associated string table. One greater than the symboltable index of the last localsymbol (binding STB_LOCAL).
SHT_GROUP The section header index ofthe associated symbol table. The symbol table index of anentry in the associated symboltable. The name of thespecified symbol table entryprovides a signature for thesection group.
SHT_SYMTAB_SHNDX The section header index ofthe associated symbol tablesection.

0

3.6 First Section Header Table Entry

As mentioned before, the section header at index 0 (SHN_UNDEF) exists, even though the index marksundefined section references. This entry holds the following.
Table 3.5: First Section Header Table Entry

Name Value Note
sh_name 0 No name
sh_type SHT_NULL Inactive
sh_flags 0 No flags
sh_addr 0 No address
sh_offset 0 No offset
sh_size Unspecified If non-zero, the actual number of section header entries
sh_link Unspecified If non-zero, the index of the section header string table section
sh_info 0 No auxiliary information
sh_addralign 0 No alignment
sh_entsize 0 No entries

3.7 Compressed Sections

The SHF_COMPRESSED section header flag indicates a section that has been compressed to save space inthe object file.
All relocations to a compressed section specify offsets to the uncompressed section data. It is therefore
3.6. First Section Header Table Entry 19

ELF Object File Format

necessary to decompress the section data before relocations can be applied. Each compressed sectionspecifies the algorithm independently. It is permissible for different sections in a given ELF object toemploy different compression algorithms.
Compressed sections begin with a compression header structure that identifies the compression al-gorithm.

Listing 3.2: Compression Header
typedef struct {

Elf32_Word ch_type;
Elf32_Word ch_size;
Elf32_Word ch_addralign;

} Elf32_Chdr;

typedef struct {
Elf64_Word ch_type;
Elf64_Word ch_reserved;
Elf64_Xword ch_size;
Elf64_Xword ch_addralign;

} Elf64_Chdr;

ch_typeThis member specifies the compression algorithm. Supported algorithms and their descriptionsare listed in the ELF Compression Types table below.
ch_sizeThis member provides the size in bytes of the uncompressed data. See sh_size.
ch_addralignSpecifies the required alignment for the uncompressed data. See sh_addralign.
The sh_size and sh_addralign fields of the section header for a compressed section reflect the require-ments of the compressed section. The ch_size and ch_addralign fields in the compression header pro-vide the corresponding values for the uncompressed data, thereby supplying the values that sh_sizeand sh_addralign would have had if the section had not been compressed.
The layout and interpretation of the data that follows the compression header is specific to each al-gorithm, and is defined below for each value of ch_type. This area may contain algorithm specificparameters and alignment padding in addition to compressed data bytes.
A compression header’s ch_typemember specifies the compression algorithm employed, as shown inthe following table.

Table 3.6: ELF Compression Types, ch_type
Name Value
ELFCOMPRESS_ZLIB 1
ELFCOMPRESS_ZSTD 2
ELFCOMPRESS_LOOS 0x60000000
ELFCOMPRESS_HIOS 0x6fffffff
ELFCOMPRESS_LOPROC 0x70000000
ELFCOMPRESS_HIPROC 0x7fffffff

ELFCOMPRESS_ZLIBThe section data is compressed with the ZLIB algorithm. The compressed ZLIB data bytes be-gin with the byte immediately following the compression header, and extend to the end of the
20 Chapter 3. Sections

ELF Object File Format

section. Additional documentation for ZLIB may be found at http://zlib.net.
ELFCOMPRESS_ZSTDThe section data is compressed with the Zstandard algorithm. The compressed Zstandard databytes begin with the byte immediately following the compression header, and extend to the endof the section. Additional documentation for Zstandard may be found at http://www.zstandard.org.
ELFCOMPRESS_LOOS - ELFCOMPRESS_HIOSValues in this inclusive range are reserved for operating system-specific semantics.
ELFCOMPRESS_LOPROC - ELF_COMPRESS_HIPROCValues in this inclusive range are reserved for processor-specific semantics.

3.8 Rules for Linking Unrecognized Sections

If a link editor encounters sections whose headers contain OS-specific values it does not recognize inthe sh_type or sh_flags fields, the link editor should combine those sections as described below.
If the section’s sh_flags bits include the attribute SHF_OS_NONCONFORMING, then the section requires spe-cial knowledge to be correctly processed, and the link editor should reject the object containing thesection with an error.
Unrecognized sections that do not have the SHF_OS_NONCONFORMING attribute, are combined in a two-phase process. As the link editor combines sections using this process, it must honor the alignmentconstraints of the input sections (asserted by the sh_addralign field), padding between sections withzero bytes, if necessary, and producing a combination with the maximum alignment constraint of itscomponent input sections.
1. In the first phase, input sections that match in name, type and attribute flags should be concate-nated into single sections. The concatenation order should satisfy the requirements of any knowninput section attributes (e.g, SHF_MERGE and SHF_LINK_ORDER). When not otherwise constrained,sections should be emitted in input order.
2. In the second phase, sections should be assigned to segments or other units based on theirattribute flags. Sections of each particular unrecognized type should be assigned to the sameunit unless prevented by incompatible flags, andwithin a unit, sections of the same unrecognizedtype should be placed together if possible.

Non OS-specific processing (e.g. relocation) should be applied to unrecognized section types. An out-put section header table, if present, should contain entries for unknown sections. Any unrecognizedsection attribute flags should be removed.
ò Note

It is recommended that link editors follow the same two-phase ordering approach described abovewhen linking sections of known types. Padding between such sections may have values differentfrom zero, where appropriate.

3.9 Section Groups

Some sections occur in interrelated groups. For example, an out-of-line definition of an inline functionmight require, in addition to the section containing its executable instructions, a read-only data sectioncontaining literals referenced, one or more debugging information sections and other informational
3.8. Rules for Linking Unrecognized Sections 21

http://zlib.net
http://www.zstandard.org
http://www.zstandard.org

ELF Object File Format

sections. Furthermore, there may be internal references among these sections that would not makesense if one of the sections were removed or replaced by a duplicate from another object. Therefore,such groups must be included or omitted from the linked object as a unit. A section cannot be amember of more than one group.
A section of type SHT_GROUP defines such a grouping of sections. The name of a symbol from one ofthe containing object’s symbol tables provides a signature for the section group. The section header ofthe SHT_GROUP section specifies the identifying symbol entry, as described above: the sh_linkmembercontains the section header index of the symbol table section that contains the entry. The sh_infomember contains the symbol table index of the identifying entry. The sh_flagsmember of the sectionheader contains 0. The name of the section (sh_name) is not specified.
The referenced signature symbol is not restricted. Its containing symbol table section need not be amember of the group, for example.
The section data of a SHT_GROUP section is an array of Elf32_Word/Elf64_Word entries. The first entry isa flag word. The remaining entries are a sequence of section header indices.
The following flags are currently defined:

Table 3.7: Section Group Flags
Name Value
GRP_COMDAT 0x1
GRP_MASKOS 0x0ff00000
GRP_MASKPROC 0xf0000000

GRP_COMDATThis is a COMDAT group. It may duplicate another COMDAT group in another object file, whereduplication is defined as having the same group signature. In such cases, only one of the dupli-cate groups may be retained by the linker, and the members of the remaining groups must bediscarded.
GRP_MASKOSAll bits included in this mask are reserved for operating system-specific semantics.
GRP_MASKPROCAll bits included in this mask are reserved for processor-specific semantics. If meanings are spec-ified, the psABI supplement explains them.
The section header indices in the SHT_GROUP section identify the sections that make up the group. Eachsuch section must have the SHF_GROUP flag set in its sh_flags section header member. If the linkerdecides to remove the section group, it must remove all members of the group.
ò Note

This requirement is not intended to imply that special case behavior like removing debugging in-formation requires removing the sections to which that information refers, even if they are part ofthe same group.
To facilitate removing a group without leaving dangling references and with only minimal processingof the symbol table, the following rules must be followed:

• A symbol table entry with STB_GLOBAL or STB_WEAK binding that is defined relative to one of agroup’s sections, and that is contained in a symbol table section that is not part of the group,must be converted to an undefined symbol (its section index must be changed to SHN_UNDEF) if

22 Chapter 3. Sections

ELF Object File Format

the group members are discarded. References to this symbol table entry from outside the groupare allowed.
• A symbol table entry with STB_LOCAL binding that is defined relative to one of a group’s sections,and that is contained in a symbol table section that is not part of the group, must be discarded ifthe group members are discarded. References to this symbol table entry from outside the groupare not allowed.
• An undefined symbol that is referenced only from one or more sections that are part of a par-ticular group, and that is contained in a symbol table section that is not part of the group, is notremoved when the group members are discarded. In other words, the undefined symbol is notremoved even if no references to that symbol remain.
• There may not be non-symbol references to the sections comprising a group from outside thegroup, for example, use of a groupmember’s section header index in an sh_link or sh_infomem-ber.

3.10 Special Sections

Various sections hold program and control information.
The following table shows sections that are used by the system and have the indicated types andattributes.

Table 3.8: Special Sections
Name Type Attributes
.bss SHT_NOBITS SHF_ALLOC+SHF_WRITE
.comment SHT_PROGBITS none
.data SHT_PROGBITS SHF_ALLOC+SHF_WRITE
.data1 SHT_PROGBITS SHF_ALLOC+SHF_WRITE
.debug SHT_PROGBITS none
.dynamic SHT_DYNAMIC see below
.dynstr SHT_STRTAB SHF_ALLOC
.dynsym SHT_DYNSYM SHF_ALLOC
.fini SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR
.fini_array SHT_FINI_ARRAY SHF_ALLOC+SHF_WRITE
.got SHT_PROGBITS see below
.hash SHT_HASH SHF_ALLOC
.init SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR
.init_array SHT_INIT_ARRAY SHF_ALLOC+SHF_WRITE
.interp SHT_PROGBITS see below
.line SHT_PROGBITS none
.note SHT_NOTE none
.plt SHT_PROGBITS see below
.preinit_array SHT_PREINIT_ARRAY SHF_ALLOC+SHF_WRITE
.relname SHT_REL see below
.relaname SHT_RELA see below
.relr.dyn SHT_RELR SHF_ALLOC
.rodata SHT_PROGBITS SHF_ALLOC
.rodata1 SHT_PROGBITS SHF_ALLOC
.shstrtab SHT_STRTAB none
.strtab SHT_STRTAB see below

continues on next page
3.10. Special Sections 23

ELF Object File Format

Table 3.8 – continued from previous page
Name Type Attributes
.symtab SHT_SYMTAB see below
.symtab_shndx SHT_SYMTAB_SHNDX see below
.tbss SHT_NOBITS SHF_ALLOC+SHF_WRITE+SHF_TLS
.tdata SHT_PROGBITS SHF_ALLOC+SHF_WRITE+SHF_TLS
.tdata1 SHT_PROGBITS SHF_ALLOC+SHF_WRITE+SHF_TLS
.text SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.bss This section holds uninitialized data that contribute to the program’s memory image. By defi-nition, the system initializes the data with zeros when the program begins to run. The sectionoccupies no file space, as indicated by the section type, SHT_NOBITS.

.commentThis section holds version control information.

.data and .data1These sections hold initialized data that contribute to the program’s memory image.

.debugThis section holds information for symbolic debugging. The contents are unspecified. All sectionnames with the prefix .debug are reserved for future use in the ABI.

.dynamicThis section holds dynamic linking information. The section’s attributes will include the SHF_ALLOCbit. Whether the SHF_WRITE bit is set is processor specific. See Section 8.3, Dynamic Section, formore information.

.dynstrThis section holds strings needed for dynamic linking, most commonly the strings that representthe names associated with symbol table entries. See Section 8.3, Dynamic Section, for moreinformation.

.dynsymThis section holds the dynamic linking symbol table, as described in Chapter 5, Symbol Table, andChapter 8, Dynamic Linking.

.finiThis section holds executable instructions that contribute to the process termination code. Thatis, when a program exits normally, the system arranges to execute the code in this section.

.fini_arrayThis section holds an array of function pointers that contributes to a single termination array forthe executable or shared object containing the section.

.got This section holds the global offset table. See the psABI supplement for more information.

.hashThis section holds a symbol hash table. See Section 8.5, Hash Table, for more information.

.initThis section holds executable instructions that contribute to the process initialization code. Whena program starts to run, the system arranges to execute the code in this section before callingthe main program entry point (called main for C programs).

.init_arrayThis section holds an array of function pointers that contributes to a single initialization array for
24 Chapter 3. Sections

ELF Object File Format

the executable or shared object containing the section.
.interpThis section holds the path name of a program interpreter. If the file has a loadable segment thatincludes relocation, the sections’ attributes will include the SHF_ALLOC bit; otherwise, that bit willbe off. See Section 8.1, Program Interpreter, for more information.
.lineThis section holds line number information for symbolic debugging, which describes the corre-spondence between the source program and the machine code. The contents are unspecified.
.noteThis section holds information as described in Section 7.6, Note Sections.
.plt This section holds the procedure linkage table. See the psABI supplement for more information.
.preinit_arrayThis section holds an array of function pointers that contributes to a single pre-initialization arrayfor the executable or shared object containing the section.
.relname and .relanameThese sections hold relocation information, as described in Chapter 6, Relocation. If the file hasa loadable segment that includes relocation, the sections’ attributes will include the SHF_ALLOCbit; otherwise, that bit will be off. Conventionally, name is supplied by the section to which therelocations apply. Thus a relocation section for .text normally would have the name .rel.textor .rela.text.
.relr.dynThis section holds relative relocation information for dynamic linking, compactly encoded as de-scribed in Section 6.2, Relative Relocation Table. The relocations in this section are processedbefore other relocations in any SHT_REL or SHT_RELA section.
.rodata and .rodata1These sections hold read-only data that typically contribute to a non-writable segment in theprocess image. See Chapter 7, Program Loading for more information.
.shstrtabThis section holds section names.
.strtabThis section holds strings, most commonly the strings that represent the names associated withsymbol table entries. If the file has a loadable segment that includes the symbol string table, thesection’s attributes will include the SHF_ALLOC bit; otherwise, that bit will be off.
.symtabThis section holds a symbol table, as described in Chapter 5, Symbol Table. If the file has a load-able segment that includes the symbol table, the section’s attributes will include the SHF_ALLOCbit; otherwise, that bit will be off.
.symtab_shndxThis section holds the special symbol table section index array, as described above. The section’sattributes will include the SHF_ALLOC bit if the associated symbol table section does; otherwisethat bit will be off.
.tbssThis section holds uninitialized thread-local data that contribute to the program’s memory image.By definition, the system initializes the data with zeros when the data is instantiated for each newexecution flow. The section occupies no file space, as indicated by the section type, SHT_NOBITS.Implementations need not support thread-local storage.

3.10. Special Sections 25

ELF Object File Format

.tdataThis section holds initialized thread-local data that contributes to the program’s memory image. Acopy of its contents is instantiated by the system for each new execution flow. Implementationsneed not support thread-local storage.

.textThis section holds the “text,” or executable instructions, of a program.
Section names with a dot (.) prefix are reserved for the system, although applications may use thesesections if their existing meanings are satisfactory. Applications may use names without the prefix toavoid conflicts with system sections. The object file format lets one define sections not shown in theprevious list. An object file may have more than one section with the same name.
Section names reserved for a processor architecture are formed by placing an abbreviation of the ar-chitecture name ahead of the section name. The name should be taken from the architecture namesused for e_machine. For instance .FOO.psect is the psect section defined by the FOO architecture. Ex-isting extensions are called by their historical names.

Table 3.9: Pre-existing Extensions
.sdata .tdesc
.sbss .lit4
.lit8 .reginfo
.gptab .liblist
.conflict

ò Note

For information onprocessor-specific sections, see the psABI supplement for the desired processor.

26 Chapter 3. Sections

Chapter 4

String Table

String table sections hold null-terminated character sequences, commonly called strings. The objectfile uses these strings to represent symbol and section names. One references a string as an indexinto the string table section. The first byte, which is index zero, is defined to hold a null character.Likewise, a string table’s last byte is defined to hold a null character, ensuring null termination for allstrings. A string whose index is zero specifies either no name or a null name, depending on the context.An empty string table section is permitted; its section header’s sh_size member would contain zero.Non-zero indexes are invalid for an empty string table.
A section header’s sh_name member holds an index into the section header string table section, asdesignated by the e_shstrndx member of the ELF header. The following figures show a string tablewith 25 bytes and the strings associated with various indexes.

a r i a b l e \0
8 9 10 11 12 13 14 15

a b l e \0 \0 x x
16

\0
2417 18 19 20 21 22 23

\0 n a m e . \0 V
0 1 2 3 4 5 6 7

Figure 4.1: Example String Table
Table 4.1: String Table Indexes

Index String
0 none1 “name.”7 “Variable”11 “able”16 “able”22 “xx”24 “” (null string)

As the example shows, a string table index may refer to any byte in the section. A string may appearmore than once, references to substrings may exist, and a single string may be referenced multiple
27

ELF Object File Format

times. Unreferenced strings also are allowed.

28 Chapter 4. String Table

Chapter 5

Symbol Table

An object file’s symbol table holds information needed to locate and relocate a program’s symbolicdefinitions and references. A symbol table index is a subscript into this array. Index 0 both designatesthe first entry in the table and serves as the undefined symbol index. The contents of the initial entryare specified in Section 5.6, First Symbol Table Entry.
Table 5.1: Special Symbol Table Index

Name Value
STN_UNDEF 0

5.1 Symbol Table Entry

A symbol table entry has the following format.
Listing 5.1: Symbol Table Entry

typedef struct {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;

} Elf32_Sym;

typedef struct {
Elf64_Word st_name;
unsigned char st_info;
unsigned char st_other;
Elf64_Half st_shndx;
Elf64_Addr st_value;
Elf64_Xword st_size;

} Elf64_Sym;

st_nameThis member holds an index into the object file’s symbol string table, which holds the character
29

ELF Object File Format

representations of the symbol names. If the value is non-zero, it represents a string table indexthat gives the symbol name. Otherwise, the symbol table entry has no name.
ò Note

External C symbols have the same names in C and object files’ symbol tables.
st_valueThis member gives the value of the associated symbol. Depending on the context, this may bean absolute value, an address, and so on; details appear below.
st_sizeMany symbols have associated sizes. For example, a data object’s size is the number of bytescontained in the object. This member holds 0 if the symbol has no size or an unknown size.
st_infoThismember specifies the symbol’s type and binding attributes. A list of the values andmeaningsappears below. The following code shows how to manipulate the values for both 32 and 64-bitobjects.

#define ELF32_ST_BIND(i) ((i)>>4)
#define ELF32_ST_TYPE(i) ((i)&0xf)
#define ELF32_ST_INFO(b,t) (((b)<<4)+((t)&0xf))

#define ELF64_ST_BIND(i) ((i)>>4)
#define ELF64_ST_TYPE(i) ((i)&0xf)
#define ELF64_ST_INFO(b,t) (((b)<<4)+((t)&0xf))

st_otherThis member currently specifies a symbol’s visibility. A list of the values and meanings appearsbelow. The following code shows how to manipulate the values for both 32 and 64-bit objects.Other bits contain 0 and have no defined meaning.
#define ELF32_ST_VISIBILITY(o) ((o)&0x7)
#define ELF64_ST_VISIBILITY(o) ((o)&0x7)

st_shndxEvery symbol table entry is defined in relation to some section. This member holds the relevantsection header table index. As described in Section 3.1, Special Section Indexes, some sectionindexes indicate special meanings.
If this member contains SHN_XINDEX, then the actual section header index is too large to fit in thisfield. The actual value is contained in the associated section of type SHT_SYMTAB_SHNDX.

5.2 Symbol Binding

A symbol’s binding determines the linkage visibility and behavior.

30 Chapter 5. Symbol Table

ELF Object File Format

Table 5.2: Symbol Binding
Name Value
STB_LOCAL 0
STB_GLOBAL 1
STB_WEAK 2
STB_LOOS 10
STB_HIOS 12
STB_LOPROC 13
STB_HIPROC 15

STB_LOCALLocal symbols are not visible outside the object file containing their definition. Local symbols ofthe same name may exist in multiple files without interfering with each other.
STB_GLOBALGlobal symbols are visible to all object files being combined. One file’s definition of a globalsymbol will satisfy another file’s undefined reference to the same global symbol.
STB_WEAKWeak symbols resemble global symbols, but their definitions have lower precedence.
STB_LOOS through STB_HIOSValues in this inclusive range are reserved for operating system-specific semantics.
STB_LOPROC through STB_HIPROCValues in this inclusive range are reserved for processor-specific semantics. If meanings are spec-ified, the psABI supplement explains them.
Global and weak symbols differ in two major ways.

• When the link editor combines several relocatable object files, it does not allow multiple defini-tions of STB_GLOBAL symbols with the same name. On the other hand, if a defined global symbolexists, the appearance of a weak symbol with the same name will not cause an error. The linkeditor honors the global definition and ignores the weak ones. Similarly, if a common symbol ex-ists (that is, a symbol whose st_shndx field holds SHN_COMMON), the appearance of a weak symbolwith the same name will not cause an error. The link editor honors the common definition andignores the weak ones.
• When the link editor searches archive libraries, it extracts archive members that contain defini-tions of undefined global symbols. The member’s definition may be either a global or a weaksymbol. The link editor does not extract archive members to resolve undefined weak symbols.Unresolved weak symbols have a zero value.

ò Note

The behavior of weak symbols in areas not specified by this document is implementation defined.Weak symbols are intended primarily for use in system software. Applications using weak symbolsare unreliable since changes in the runtime environment might cause the execution to fail.
In each symbol table, all symbols with STB_LOCAL binding precede the weak and global symbols. Asdescribed in Chapter 3, Sections, a symbol table section’s sh_info section header member holds thesymbol table index for the first non-local symbol.

5.2. Symbol Binding 31

ELF Object File Format

5.3 Symbol Type

A symbol’s type provides a general classification for the associated entity.
Table 5.3: Symbol Types
Name Value
STT_NOTYPE 0
STT_OBJECT 1
STT_FUNC 2
STT_SECTION 3
STT_FILE 4
STT_COMMON 5
STT_TLS 6
STT_LOOS 10
STT_HIOS 12
STT_LOPROC 13
STT_HIPROC 15

STT_NOTYPEThe symbol’s type is not specified.
STT_OBJECTThe symbol is associated with a data object, such as a variable, an array, and so on.
STT_FUNCThe symbol is associated with a function or other executable code.
STT_SECTIONThe symbol is associated with a section. Symbol table entries of this type exist primarily for relo-cation and normally have STB_LOCAL binding.
STT_FILEConventionally, the symbol’s name gives the name of the source file associated with the objectfile. A file symbol has STB_LOCAL binding, its section index is SHN_ABS, and it precedes the other

STB_LOCAL symbols for the file, if it is present.
STT_COMMONThe symbol labels an uninitialized common block. See below for details.
STT_TLSThe symbol specifies a Thread-Local Storage entity. When defined, it gives the assigned offset forthe symbol, not the actual address. Symbols of type STT_TLS can be referenced by only specialthread-local storage relocations and thread-local storage relocations can only reference symbolswith type STT_TLS. Implementations need not support thread-local storage.
STT_LOOS through STT_HIOSValues in this inclusive range are reserved for operating system-specific semantics.
STT_LOPROC through STT_HIPROCValues in this inclusive range are reserved for processor-specific semantics. If meanings are spec-ified, the psABI supplement explains them.
Function symbols (those with type STT_FUNC) in shared object files have special significance. Whenanother object file references a function from a shared object, the link editor automatically creates aprocedure linkage table entry for the referenced symbol. Shared object symbols with types other than
STT_FUNC will not be referenced automatically through the procedure linkage table.

32 Chapter 5. Symbol Table

ELF Object File Format

Symbols with type STT_COMMON label uninitialized common blocks. In relocatable objects, these symbolsare not allocated and must have the special section index SHN_COMMON (see below). In shared objectsand executables these symbols must be allocated to some section in the defining object.
In relocatable objects, symbols with type STT_COMMON are treated just as other symbols with index
SHN_COMMON. If the link-editor allocates space for the SHN_COMMON symbol in an output section of theobject it is producing, it must preserve the type of the output symbol as STT_COMMON.
When the dynamic linker encounters a reference to a symbol that resolves to a definition of type
STT_COMMON, it may (but is not required to) change its symbol resolution rules as follows: instead ofbinding the reference to the first symbol found with the given name, the dynamic linker searches forthe first symbol with that name with type other than STT_COMMON. If no such symbol is found, it looksfor the STT_COMMON definition of that name that has the largest size.

5.4 Symbol Visibility

A symbol’s visibility, although it may be specified in a relocatable object, defines how that symbol maybe accessed once it has become part of an executable or shared object.
Table 5.4: Symbol Visibility
Name Value
STV_DEFAULT 0
STV_INTERNAL 1
STV_HIDDEN 2
STV_PROTECTED 3
STV_EXPORTED 4
STV_SINGLETON 5
STV_ELIMINATE 6

STV_DEFAULTThe visibility of symbolswith the STV_DEFAULT attribute is as specified by the symbol’s binding type.That is, global and weak symbols are visible outside of their defining component (executable fileor shared object). Local symbols are hidden, as described below. Global and weak symbols arealso preemptable, that is, they may by preempted by definitions of the same name in anothercomponent.
ò Note

An implementationmay restrict the set of global and weak symbols that are externally visible.
STV_PROTECTEDA symbol defined in the current component is protected if it is visible in other components but notpreemptable, meaning that any reference to such a symbol from within the defining componentmust be resolved to the definition in that component, even if there is a definition in anothercomponent that would preempt by the default rules. A symbol with STB_LOCAL binding may nothave STV_PROTECTED visibility.

If a symbol definition with STV_PROTECTED visibility from a shared object is taken as resolving areference from an executable or another shared object, the SHN_UNDEF symbol table entry createdhas STV_DEFAULT visibility.

5.4. Symbol Visibility 33

ELF Object File Format

ò Note

The presence of the STV_PROTECTED flag on a symbol in a given load module does not affectthe symbol resolution rules for references to that symbol from outside the containing loadmodule.
STV_HIDDENA symbol defined in the current component is hidden if its name is not visible to other compo-nents. Such a symbol is necessarily protected. This attribute may be used to control the externalinterface of a component. Note that an object named by such a symbol may still be referencedfrom another component if its address is passed outside.

A hidden symbol contained in a relocatable object must be either removed or converted to
STB_LOCAL binding by the link-editor when the relocatable object is included in an executable fileor shared object.

STV_INTERNALThemeaning of this visibility attribute may be defined by psABI supplements to further constrainhidden symbols. A psABI supplement’s definition should be such that generic tools can safelytreat internal symbols as hidden.
An internal symbol contained in a relocatable object must be either removed or converted to
STB_LOCAL binding by the link-editor when the relocatable object is included in an executable fileor shared object.

STV_EXPORTEDThis visibility attribute ensures that a symbol remains global. Unlike STV_DEFAULT symbols, whosevisibility can be affected by other visibility requests, the STV_EXPORTED attribute ensures that thevisibility of the symbol is not reduced by any other visibility request.
STV_SINGLETONThis visibility attribute is reserved to the psABI supplements. If implemented, it ensures that allreferences within a process bind to a single instance of the symbol definition.
STV_ELIMINATEThis visibility attribute is reserved to the psABI supplements. If implemented, it prevents thesymbol from being written to the dynamic symbol table. Otherwise, it can be treated the sameas STV_HIDDEN.
None of the visibility attributes affects resolution of symbols within an executable or shared objectduring link-editing – such resolution is controlled by the binding type. Once the link-editor has chosenits resolution, these attributes impose two requirements, both based on the fact that references in thecode being linked may have been optimized to take advantage of the attributes.

• First, all of the non-default visibility attributes, when applied to a symbol reference, imply thata definition to satisfy that reference must be provided within the current executable or sharedobject. If such a symbol reference has no definition within the component being linked, then thereference must have STB_WEAK binding and is resolved to zero.
• Second, if any reference to or definition of a name is a symbol with a non-default visibility at-tribute, the visibility attribute must be propagated to the resolving symbol in the linked object. Ifdifferent visibility attributes are specified for distinct references to or definitions of a symbol, themost constraining visibility attribute must be propagated to the resolving symbol in the linkedobject. The attributes, ordered from least to most constraining, are: STV_PROTECTED, STV_HIDDEN,
STV_INTERNAL, and STV_EXPORTED.

34 Chapter 5. Symbol Table

ELF Object File Format

5.5 Section Index

If a symbol’s value refers to a specific location within a section, its section index member, st_shndx,holds an index into the section header table. As the section moves during relocation, the symbol’svalue changes as well, and references to the symbol continue to “point” to the same location in theprogram. Some special section index values give other semantics.
SHN_ABSThe symbol has an absolute value that will not change because of relocation.
SHN_COMMONThe symbol labels a common block that has not yet been allocated. The symbol’s value givesalignment constraints, similar to a section’s sh_addralign member. The link editor will allocatethe storage for the symbol at an address that is amultiple of st_value. The symbol’s size tells howmany bytes are required. Symbols with section index SHN_COMMONmay appear only in relocatableobjects.
SHN_UNDEFThis section table index means the symbol is undefined. When the link editor combines thisobject file with another that defines the indicated symbol, this file’s references to the symbol willbe linked to the actual definition.
SHN_XINDEXThis value is an escape value. It indicates that the symbol refers to a specific location within a sec-tion, but that the section header index for that section is too large to be represented directly in thesymbol table entry. The actual section header index is found in the associated SHT_SYMTAB_SHNDXsection. The entries in that section correspond one to one with the entries in the symbol table.Only those entries in SHT_SYMTAB_SHNDX that correspond to symbol table entries with SHN_XINDEXwill hold valid section header indexes; all other entries will have value 0.

5.6 First Symbol Table Entry

The symbol table entry for index 0 (STN_UNDEF) is reserved; it holds the following.
Table 5.5: First Symbol Table Entry

Name Value Note
st_name 0 No name
st_value 0 Zero value
st_size 0 No size
st_info 0 No type, local binding
st_other 0 Default visibility
st_shndx SHN_UNDEF No section

5.7 Symbol Value

Symbol table entries for different object file types have slightly different interpretations for the
st_valuemember.

• In relocatable files, st_value holds alignment constraints for a symbol whose section index is
SHN_COMMON.

5.5. Section Index 35

ELF Object File Format

• In relocatable files, st_value holds a section offset for a defined symbol. st_value is an offsetfrom the beginning of the section that st_shndx identifies.
• In executable and shared object files, st_value holds a virtual address. To make these files’ sym-bols more useful for the dynamic linker, the section offset (file interpretation) gives way to avirtual address (memory interpretation) for which the section number is irrelevant.

Despite this difference in interpretation, the st_value for a given symbol conveys the same meaningacross the different ELF object types. The different interpretation for relocatable, and the other objecttypes, allows for efficient access by the link-editor, as well as by the runtime linker, in their respectivecontexts.

36 Chapter 5. Symbol Table

Chapter 6

Relocation

Relocation is the process of connecting symbolic references with symbolic definitions. For example,when a program calls a function, the associated call instruction must transfer control to the properdestination address at execution. Relocatable files must have relocation entries, which describe howto modify the section contents, thus allowing executable and shared object files to hold the right in-formation for a process’s program image.
Executable files may also have relocation entries, which are necessary when the code has unboundreferences to a shared object, or when the code is position-independent.
Most relocations are symbolic, computing the value of an expression involving a symbol and an offset(called the addend), applying the result to a location in the object code. A relocation type encodesan operation (how the expression is computed) and a format (how the result is to be applied at thelocation).
In executable files, some relocations are relative. A relative relocation marks a location that holds a 32-bit or 64-bit address that must be relocated when a program segment is loaded at a runtime addressthat is different from its link-time address. These relocations do not require a symbol or an addend.

6.1 Relocation Entry

Relocation entries have the following formats.
Listing 6.1: Relocation Entries

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;

} Elf32_Rel;

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;
Elf32_Sword r_addend;

} Elf32_Rela;

typedef struct {
Elf64_Addr r_offset;
Elf64_Xword r_info; (continues on next page)

37

ELF Object File Format

(continued from previous page)
} Elf64_Rel;

typedef struct {
Elf64_Addr r_offset;
Elf64_Xword r_info;
Elf64_Sxword r_addend;

} Elf64_Rela;

r_offsetThis member gives the location at which to apply the relocation action. For a relocatable file,the value is the byte offset from the beginning of the section to the storage unit affected by therelocation. For an executable file or a shared object, the value is the virtual address of the storageunit affected by the relocation.
r_infoThis member gives both the symbol table index with respect to which the relocation must bemade, and the type of relocation to apply. For example, a call instruction’s relocation entry wouldhold the symbol table index of the function being called. If the index is STN_UNDEF, the undefinedsymbol index, the relocation uses 0 as the “symbol value”. Relocation types are processor-specific;descriptions of their behavior appear in the psABI supplement. When the text below refers to a re-location entry’s relocation type or symbol table index, itmeans the result of applying ELF32_R_TYPE(or ELF64_R_TYPE) or ELF32_R_SYM (or ELF64_R_SYM), respectively, to the entry’s r_infomember.

#define ELF32_R_SYM(i) ((i)>>8)
#define ELF32_R_TYPE(i) ((unsigned char)(i))
#define ELF32_R_INFO(s,t) (((s)<<8)+(unsigned char)(t))

#define ELF64_R_SYM(i) ((i)>>32)
#define ELF64_R_TYPE(i) ((i)&0xffffffffL)
#define ELF64_R_INFO(s,t) (((s)<<32)+((t)&0xffffffffL))

r_addendThis member specifies a constant addend used to compute the value to be stored into the relo-catable field.
As specified previously, only Elf32_Rela and Elf64_Rela entries contain an explicit addend. Entries oftype Elf32_Rel and Elf64_Rel store an implicit addend in the location to bemodified. Depending on theprocessor architecture, one form or the other might be necessary or more convenient. Consequently,an implementation for a particular machine may use one form exclusively or either form dependingon context.
A relocation section references two other sections: a symbol table and a section tomodify. The sectionheader’s sh_info and sh_linkmembers, described in Section 3.5, The sh_link and sh_info Fields, specifythese relationships. Relocation entries for different object files have slightly different interpretationsfor the r_offsetmember.

• In relocatable files, r_offset holds a section offset. The relocation section itself describes how tomodify another section in the file; relocation offsets designate a storage unit within the secondsection.
• In executable and shared object files, r_offset holds a virtual address. To make these files’ relo-cation entries more useful for the dynamic linker, the section offset (file interpretation) gives wayto a virtual address (memory interpretation).

Although the interpretation of r_offset changes for different object files to allow efficient access bythe relevant programs, the relocation types’ meanings stay the same.
38 Chapter 6. Relocation

ELF Object File Format

The typical application of an ELF relocation is to determine the referenced symbol value, extract theaddend (either from the field to be relocated or from the addend field contained in the relocationrecord, as appropriate for the type of relocation record), apply the expression implied by the relocationtype to the symbol and addend, extract the desired part of the expression result, and place it in thefield to be relocated.
If multiple consecutive relocation records are applied to the same relocation location (r_offset), theyare composed instead of being applied independently, as described above. By consecutive, we meanthat the relocation records are contiguous within a single relocation section. By composed, we meanthat the standard application described above is modified as follows:

• In all but the last relocation operation of a composed sequence, the result of the relocation ex-pression is retained, rather than having part extracted and placed in the relocated field. Theresult is retained at full pointer precision of the applicable psABI supplement.
• In all but the first relocation operation of a composed sequence, the addend used is the retainedresult of the previous relocation operation, rather than that implied by the relocation type.

Note that a consequence of the above rules is that the location specified by a relocation type is relevantfor the first element of a composed sequence (and then only for relocation records that do not containan explicit addend field) and for the last element, where the location determines where the relocatedvalue will be placed. For all other relocation operands in a composed sequence, the location specifiedis ignored.
A psABI supplement may specify individual relocation types that always stop a composition sequence,or always start a new one.

6.2 Relative Relocation Table

Listing 6.2: Relative Relocation Table Entries
typedef Elf32_Word Elf32_Relr;
typedef Elf64_Xword Elf64_Relr;

Relative relocations are used to identify virtual-address-sized storage units within the object whosecontents are independent of any dynamic binding, but must still be relocated at load time to supportposition independence. Before the program can begin execution, these locations must be relocatedby reading their contents and adding a relocation factor, which is computed as the difference betweenthe object’s actual load-time virtual address and its link-time virtual address. If the object is loaded atthe address for which it was linked, the relocation factor is 0, and relative relocations may be ignored.
A relative relocation table is encoded as a sequence of Elf32_Relr entries for ELFCLASS32 objects or
Elf64_Relr entries for ELFCLASS64 objects. The relative relocation table entries decode to a list of virtualaddresses that refer to storage units within the object. Each of these storage units is the size of an
Elf32_Addr (in the case of ELFCLASS32 objects) or an Elf64_Addr (in the case of ELFCLASS64 objects).
ò Note

Relative relocations could be represented simply as a list of virtual addresses that require reloca-tion, which would be considerably more compact than using Elf32_Rel or Elf32_rela relocations.Because many such relocations occur in clusters, however, we can use a simple encoding schemeto compress the relative relocation table even further.
A relative relocation table cannot describe relocations at odd addresses. For such relocations, a
Rel- or Rela-style relocation must be used.

6.2. Relative Relocation Table 39

ELF Object File Format

The encoded sequence of Elf32_Relr or Elf64_Relr entries starts with an address entry (which musthave a 0 in the least-significant bit). This encodes one relative relocation at that address. This addressentry may be followed by zero or more bitmap entries, each of which has a 1 in the least-significantbit.
Bitmap entries describe a block of Elf32_Addr or Elf64_Addr consecutive storage units immediatelyfollowing the one to which the address entry applied. Each bitmap entry covers 31 (for Elf32_Relr) or63 (for Elf64_Relr) storage units. Each bit in the bitmap entry, excluding the least-significant bit, cor-responds to a storage unit in the block, the second-least-significant bit corresponding to the first, andthe most-significant bit corresponding to the last. For each 1 in the bitmap entry, the correspondingstorage unit is relocatable.
ò Note

This encoding scheme has the property that a simple list of (even) addresses is a valid encoding.

40 Chapter 6. Relocation

Chapter 7

Program Loading

This chapter and the next describe the object file information and system actions that create runningprograms. Some information here applies to all systems; information specific to one processor residesin sections marked accordingly.
Executable and shared object files statically represent programs. To execute such programs, the sys-tem uses the files to create dynamic program representations, or process images. A process imagehas segments that hold its text, data, stack, and so on. This is described by the psABI supplement forthe specific machine.
This chapter discusses the following:

• Program Header. The program header complements the Section Header Table (Chapter 3, Sec-tions), describing object file structures that relate directly to programexecution. The primary datastructure, a program header table, locates segment images within the file and contains other in-formation necessary to create the memory image for the program.
• Program Loading. Given an object file, the system must load it into memory for the program torun.

An executable or shared object file’s program header table is an array of structures, each describinga segment or other information the system needs to prepare the program for execution. An objectfile segment contains one or more sections, as described in Section 7.5, Segment Contents. Programheaders are meaningful only for executable and shared object files. A file specifies its own programheader size with the ELF header’s e_phentsize and e_phnum members. See Chapter 2, ELF Header formore information.
Segment entries may appear in any order, except as explicitly noted below.

7.1 Program Header Entry

Listing 7.1: Program Header
typedef struct {

Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;

(continues on next page)

41

ELF Object File Format

(continued from previous page)
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

} Elf32_Phdr;

typedef struct {
Elf64_Word p_type;
Elf64_Word p_flags;
Elf64_Off p_offset;
Elf64_Addr p_vaddr;
Elf64_Addr p_paddr;
Elf64_Xword p_filesz;
Elf64_Xword p_memsz;
Elf64_Xword p_align;

} Elf64_Phdr;

p_typeThis member tells what kind of segment this array element describes or how to interpret thearray element’s information. Type values and their meanings appear below.
p_offsetThis member gives the offset from the beginning of the file at which the first byte of the segmentresides.
p_vaddrThis member gives the virtual address at which the first byte of the segment resides in memory.
p_paddrOn systems for which physical addressing is relevant, this member is reserved for the segment’sphysical address. Because System V ignores physical addressing for application programs, thismember has unspecified contents for executable files and shared objects.
p_fileszThis member gives the number of bytes in the file image of the segment; it may be zero.
p_memszThis member gives the number of bytes in the memory image of the segment; it may be zero.
p_flagsThis member gives flags relevant to the segment. Defined flag values appear below.
p_alignLoadable process segments must have congruent values for p_vaddr and p_offset, modulo thepage size. This member gives the value to which the segments are aligned in memory and inthe file. Values 0 and 1 mean no alignment is required. Otherwise, p_align should be a positive,integral power of 2, and p_vaddr should equal p_offset, modulo p_align.

7.2 Segment Types

Some entries describe process segments; others give supplementary information and do not con-tribute to the process image.
Defined segment type values are listed in Table 7.1; other values are reserved for future use.

42 Chapter 7. Program Loading

ELF Object File Format

Table 7.1: Segment Types, p_type
Name Value
PT_NULL 0
PT_LOAD 1
PT_DYNAMIC 2
PT_INTERP 3
PT_NOTE 4
PT_SHLIB 5
PT_PHDR 6
PT_TLS 7
PT_LOOS 0x60000000
PT_HIOS 0x6fffffff
PT_LOPROC 0x70000000
PT_HIPROC 0x7fffffff

PT_NULLThe array element is unused; other members’ values are undefined. This type lets the programheader table have ignored entries.
PT_LOADThe array element specifies a loadable segment, described by p_filesz and p_memsz. The bytesfrom the file aremapped to the beginning of thememory segment. If the segment’s memory size(p_memsz) is larger than the file size (p_filesz), the “extra” bytes are defined to hold the value 0and to follow the segment’s initialized area. The file size may not be larger than the memory size.Loadable segment entries in the program header table appear in ascending order, sorted on the

p_vaddrmember.
PT_DYNAMICThe array element specifies dynamic linking information. See Section 8.3, Dynamic Section, formore information.
PT_INTERPThe array element specifies the location and size of a null-terminated path name to invoke as aninterpreter. This segment type is meaningful only for executable files (though it may occur forshared objects); it may not occur more than once in a file. If it is present, it must precede anyloadable segment entry. See Section 8.1, Program Interpreter, for more information.
PT_NOTEThe array element specifies the location and size of auxiliary information. See Section 7.6, NoteSections, for more information.
PT_SHLIBThis segment type is reserved but has unspecified semantics. Programs that contain an arrayelement of this type do not conform to the ABI.
PT_PHDRThe array element, if present, specifies the location and size of the program header table itself,both in the file and in the memory image of the program. This segment type may not occur morethan once in a file. Moreover, it may occur only if the program header table is part of thememoryimage of the program. If it is present, it must precede any loadable segment entry.
PT_TLSThe array element specifies the Thread-Local Storage template. Implementations need not sup-port this program table entry. See Section 7.7, Thread-Local Storage, for more information.
PT_LOOS through PT_HIOS

7.2. Segment Types 43

ELF Object File Format

Values in this inclusive range are reserved for operating system-specific semantics.
PT_LOPROC through PT_HIPROCValues in this inclusive range are reserved for processor-specific semantics. If meanings are spec-ified, the psABI supplement explains them.
ò Note

Unless specifically required elsewhere, all program header segment types are optional. A file’sprogram header table may contain only those elements relevant to its contents.

7.3 Base Address

The virtual addresses in the program headers might not represent the actual virtual addresses of theprogram’s memory image. Executable files typically contain absolute code. To let the process executecorrectly, the segments must reside at the virtual addresses used to build the executable file. On theother hand, shared object segments typically contain position-independent code. This lets a segment’svirtual address change fromone process to another, without invalidating execution behavior. On someplatforms, while the system chooses virtual addresses for individual processes, it maintains the rela-
tive position of one segment to another within any one shared object. Because position-independentcode on those platforms uses relative addressing between segments, the difference between virtualaddresses in memory must match the difference between virtual addresses in the file. The differencesbetween the virtual address of any segment in memory and the corresponding virtual address in thefile is thus a single constant value for any one executable or shared object in a given process. Thisdifference is the base address. One use of the base address is to relocate the memory image of the fileduring dynamic linking.
An executable or shared object file’s base address (on platforms that support the concept) is calculatedduring execution from three values: the virtual memory load address, themaximumpage size, and thelowest virtual address of a program’s loadable segment. To compute the base address, one determinesthe memory address associated with the lowest p_vaddr value for a PT_LOAD segment. This address istruncated to the nearest multiple of the maximum page size. The corresponding p_vaddr value itself isalso truncated to the nearest multiple of the maximum page size. The base address is the differencebetween the truncated memory address and the truncated p_vaddr value.
See the psABI supplement for more information and examples.

7.4 Segment Permissions

A program to be loaded by the system must have at least one loadable segment (although this is notrequired by the file format). When the system creates loadable segments’ memory images, it givesaccess permissions as specified in the p_flagsmember.
Table 7.2: Segment Flag Bits, p_flags

Name Value Meaning
PF_X 0x1 Execute
PF_W 0x2 Write
PF_R 0x4 Read
PF_MASKOS 0x0ff00000 Unspecified
PF_MASKPROC 0xf0000000 Unspecified

44 Chapter 7. Program Loading

ELF Object File Format

All bits included in the PF_MASKOSmask are reserved for operating system-specific semantics.
All bits included in the PF_MASKPROC mask are reserved for processor-specific semantics. If meaningsare specified, the psABI supplement explains them.
If a permission bit is 0, that type of access is denied. Actual memory permissions depend on the mem-ory management unit, which may vary from one system to another. Although all flag combinationsare valid, the system may grant more access than requested. In no case, however, will a segmenthave write permission unless it is specified explicitly. The following table shows both the exact flaginterpretation and the allowable flag interpretation. ABI-conforming systems may provide either.

Table 7.3: Segment Permissions
Flags Value Exact Allowable
none 0 All access denied All access denied
PF_X 1 Execute only Read, execute
PF_W 2 Write only Read, write, execute
PF_W+PF_X 3 Write, execute Read, write, execute
PF_R 4 Read only Read, execute
PF_R+PF_X 5 Read, execute Read, execute
PF_R+PF_W 6 Read, write Read, write, execute
PF_R+PF_W+PF_X 7 Read, write, execute Read, write, execute

For example, typical text segments have read and execute—but not write—permissions. Data seg-ments normally have read, write, and execute permissions.

7.5 Segment Contents

An object file segment comprises one or more sections, though this fact is transparent to the programheader. Whether the file segment holds one or many sections also is immaterial to program loading.Nonetheless, various data must be present for program execution, dynamic linking, and so on. Thediagrams below illustrate segment contents in general terms. The order and membership of sectionswithin a segment may vary; moreover, processor-specific constraints may alter the examples below.See the psABI supplement for details.
Text segments contain read-only instructions and data, typically including the following sections (seeSection 3.10, Special Sections):

• .text

• .rodata

• .hash

• .dynsym

• .dynstr

• .plt

• .rel.got

Other sections may also reside in loadable segments; these examples are not meant to give completeand exclusive segment contents.
Data segments contain writable data and instructions, typically including the following sections.

• .data

7.5. Segment Contents 45

ELF Object File Format

• .dynamic

• .got

• .bss

A PT_DYNAMIC programheader element points at the .dynamic section, explained in Section 8.3, DynamicSection. The .got and .plt sections also hold information related to position-independent code anddynamic linking. Although the .plt appears in a text segment in the previous table, it may reside in atext or a data segment, depending on the processor. See “Global Offset Table” and “Procedure LinkageTable” in the psABI supplement for details.
As Chapter 3, Sections describes, the .bss section has the type SHT_NOBITS. Although it occupies nospace in the file, it contributes to the segment’s memory image. Normally, these uninitialized data re-side at the end of the segment, therebymaking p_memsz larger than p_filesz in the associated programheader element.

7.6 Note Sections

Sometimes a vendor or system builder needs to mark an object file with special information that otherprogramswill check for conformance, compatibility, etc. Sections of type SHT_NOTE and programheaderelements of type PT_NOTE can be used for this purpose. The note information in sections and programheader elements holds a variable amount of entries. In 64-bit objects (files with e_ident[EI_CLASS]equal to ELFCLASS64), each entry is an array of 8-byte words in the format of the target processor.In 32-bit objects (files with e_ident[EI_CLASS] equal to ELFCLASS32), each entry is an array of 4-bytewords in the format of the target processor. Labels appear below to help explain note informationorganization, but they are not part of the specification.

namesz

descsz

type

name

desc

Figure 7.1: Note Information
namesz and name

46 Chapter 7. Program Loading

ELF Object File Format

The first namesz bytes in name contain a null-terminated character representation of the entry’sowner or originator. There is no formal mechanism for avoiding name conflicts. By convention,vendors use their own name, such as XYZ Computer Company, as the identifier. If no name ispresent, namesz contains 0. Padding is present, if necessary, to ensure 8 or 4-byte alignment forthe descriptor (depending on whether the file is a 64-bit or 32-bit object). Such padding is notincluded in namesz.
descsz and descThe first descsz bytes in desc hold the note descriptor. The ABI places no constraints on a descrip-tor’s contents. If no descriptor is present, descsz contains 0. Padding is present, if necessary, toensure 8 or 4-byte alignment for the next note entry (depending on whether the file is a 64-bit or32-bit object). Such padding is not included in descsz.
type This word gives the interpretation of the descriptor. Each originator controls its own types; mul-tiple interpretations of a single type value may exist. Thus, a program must recognize both thename and the type to recognize a descriptor. Types currently must be non-negative. The ABIdoes not define what descriptors mean.
To illustrate, the following (ELFCLASS32) note segment holds two entries. Both have a 7-byte name field of“xyz co” (counting the null terminator). The first has a type field of 1 and no descriptor, and the secondhas a type field of 3 with 8 bytes of descriptor data (with no null terminator). Note that the word-sizefields namesz, descsz and type are stored with the byte order specified in the ELF Header (see EI_DATAin Section 2.2, ELF Identification).
ò Note

The system reserves note information with no name (namesz==0) and with a zero-length name(name[0]==’\0’) but currently defines no types. All other names must have at least one non-nullcharacter.

7.6. Note Sections 47

ELF Object File Format

+0

0

4

8

12

16

20

24

28

32

36

40

44

+1 +2 +3

namesz

descsz (no descriptor)

type

name

namesz

descsz

type

name

desc

7

0

1

x y z

c o \0 pad

7

8

3

x y z

c o \0 pad

e x a m

p l e 1

Figure 7.2: Example ELFCLASS32 Note Segment

48 Chapter 7. Program Loading

ELF Object File Format

ò Note

Note information is optional. The presence of note information does not affect a program’s ABI con-formance, provided the information does not affect the program’s execution behavior. Otherwise,the program does not conform to the ABI and has undefined behavior.

7.7 Thread-Local Storage

To permit association of separate copies of data allocated at compile-time with individual threads ofexecution, thread-local storage sections can be used to specify the size and initial contents of such data.Implementations need not support thread-local storage. A PT_TLS program entry has the followingmembers:
Table 7.4: Contents of the PT_TLS Entry

Member Value
p_offset File offset of the TLS initialization image
p_vaddr Virtual memory address of the TLS initialization image
p_paddr reserved
p_filesz Size of the TLS initialization image
p_memsz Total size of the TLS template
p_flags PF_R
p_align Alignment of the TLS template

The TLS template is formed from the combination of all sections with the flag SHF_TLS. The portion ofthe TLS template that holds initialized data is the TLS initialization image. (The remaining portion of theTLS template is one or more sections of type SHT_NOBITS.)

7.7. Thread-Local Storage 49

ELF Object File Format

50 Chapter 7. Program Loading

Chapter 8

Dynamic Linking

After the system loads the program, it must complete the process image by resolving symbolic refer-ences among the object files that compose the process. This chapter discusses the object file structuresthat pertain to dynamic linking.
ò Note

The psABI supplement defines a naming convention for ELF constants that have processor rangesspecified. Names such as DT_, PT_, for processor specific extensions, incorporate the name of theprocessor: DT_M32_SPECIAL, for example. Pre-existing processor extensions not using this conven-tion will be supported.
Pre-Existing Extensions
DT_JUMP_REL

8.1 Program Interpreter

An executable file that participates in dynamic linking shall have one PT_INTERP program header el-ement. During process startup (e.g., exec()), the system retrieves a path name from the PT_INTERPsegment and creates the initial process image from the interpreter file’s segments. That is, insteadof using the original executable file’s segment images, the system composes a memory image for theinterpreter. It then is the interpreter’s responsibility to receive control from the system and provide anenvironment for the application program.
The interpreter typically receives control in one of twoways. First, itmay receive a file descriptor to readthe executable file, positioned at the beginning. It can use this file descriptor to read and/or map theexecutable file’s segments into memory. Second, depending on the executable file format, the systemmay load the executable file into memory instead of giving the interpreter an open file descriptor.With the possible exception of the file descriptor, the interpreter’s initial process state matches whatthe executable file would have received. The interpreter itself may not require a second interpreter.An interpreter may be either a shared object or an executable file. See the psABI supplement foradditional information.
A shared object (the normal case) is loaded as position-independent, with addresses that may varyfrom one process to another; the system creates its segments in the dynamic segment area used by

51

ELF Object File Format

mmap and related services. Consequently, a shared object interpreter typically will not conflict with theoriginal executable file’s original segment addresses.
An executable file may be loaded at fixed addresses; if so, the system creates its segments using thevirtual addresses from the program header table. Consequently, an executable file interpreter’s virtualaddressesmay collidewith the first executable file; the interpreter is responsible for resolving conflicts.

8.2 Dynamic Linker

When building an executable file that uses dynamic linking, the link editor adds a program headerelement of type PT_INTERP to an executable file, telling the system to invoke the dynamic linker as theprogram interpreter.
ò Note

The locations of the system provided dynamic linkers are processor specific.
The system loader (e.g., exec()) and the dynamic linker cooperate to create the process image for theprogram, which entails the following actions:

• Adding the executable file’s memory segments to the process image;
• Adding shared object memory segments to the process image;
• Performing relocations for the executable file and its shared objects;
• Closing the file descriptor that was used to read the executable file, if one was given to the dy-namic linker;
• Transferring control to the program,making it look as if the programhad received control directlyfrom the system loader.

The link editor also constructs various data that assist the dynamic linker for executable and sharedobject files. As shown in Chapter 7, Program Loading, this data resides in loadable segments, makingthemavailable during execution. (Once again, recall the exact segment contents are processor-specific.See the psABI supplement for complete information).
• A .dynamic section with type SHT_DYNAMIC holds various data. The structure residing at the begin-ning of the section holds the addresses of other dynamic linking information.
• The .hash section with type SHT_HASH holds a symbol hash table.
• The .got and .plt sections with type SHT_PROGBITS hold two separate tables: the global offsettable and the procedure linkage table. The psABI supplement discusses how programs use theglobal offset table for position-independent code. Sections below explain how the dynamic linkeruses and changes the tables to create memory images for object files.

Because every ABI-conforming program imports the basic system services froma shared object library,the dynamic linker participates in every ABI-conforming program execution.
Shared objects may occupy virtual memory addresses that are different from the addresses recordedin the file’s program header table. The dynamic linker relocates the memory image, updating absoluteaddresses before the application gains control. Although the absolute address values would be correctif the library were loaded at the addresses specified in the program header table, this normally is notthe case.

52 Chapter 8. Dynamic Linking

ELF Object File Format

If the process environment contains a variable named LD_BIND_NOW with a non-null value, the dynamiclinker processes all relocations before transferring control to the program. For example, all the follow-ing environment entries would specify this behavior.
• LD_BIND_NOW=1

• LD_BIND_NOW=on

• LD_BIND_NOW=off

Otherwise, LD_BIND_NOW either does not occur in the environment or has a null value. Thedynamic linkeris permitted to evaluate procedure linkage table entries lazily, thus avoiding symbol resolution andrelocation overhead for functions that are not called. See the psABI supplement for more information.

8.3 Dynamic Section

If an object file participates in dynamic linking, its program header table will have an element of type
PT_DYNAMIC. This “segment” contains the .dynamic section. A special symbol, _DYNAMIC, labels the section,which contains an array of the following structures.

Listing 8.1: Dynamic Structure
typedef struct {

Elf32_Sword d_tag;
union {

Elf32_Word d_val;
Elf32_Addr d_ptr;

} d_un;
} Elf32_Dyn;

extern Elf32_Dyn _DYNAMIC[];

typedef struct {
Elf64_Sxword d_tag;
union {

Elf64_Xword d_val;
Elf64_Addr d_ptr;

} d_un;
} Elf64_Dyn;

extern Elf64_Dyn _DYNAMIC[];

For each object with this type, d_tag controls the interpretation of d_un.
d_valThese objects represent integer values with various interpretations.
d_ptrThese objects represent program virtual addresses. As mentioned previously, a file’s virtual ad-dresses might not match the memory virtual addresses during execution. When interpretingaddresses contained in the dynamic structure, the dynamic linker computes actual addresses,based on the original file value and the memory base address. For consistency, files do not con-tain relocation entries to “correct” addresses in the dynamic structure.
To make it simpler for tools to interpret the contents of dynamic section entries, the value of eachtag, except for those in two special compatibility ranges, will determine the interpretation of the d_ununion. A tag whose value is an even number indicates a dynamic section entry that uses d_ptr. A tag
8.3. Dynamic Section 53

ELF Object File Format

whose value is an odd number indicates a dynamic section entry that uses d_val or that uses neither
d_ptr nor d_val. Tags whose values are less than the special value DT_ENCODING and tags whose valuesfall between DT_HIOS and DT_LOPROC do not follow these rules.
The following table summarizes the tag requirements for executable and shared object files. If a tag ismarked “mandatory”, the dynamic linking array for an ABI-conforming file must have an entry of thattype. Likewise, “optional” means an entry for the tag may appear but is not required.

Table 8.1: Dynamic Array Tags, d_tag
Name Value d_un Executable Shared Object
DT_NULL 0 ignored mandatory mandatory
DT_NEEDED 1 d_val optional optional
DT_PLTRELSZ 2 d_val optional optional
DT_PLTGOT 3 d_ptr optional optional
DT_HASH 4 d_ptr mandatory† mandatory†
DT_STRTAB 5 d_ptr mandatory mandatory
DT_SYMTAB 6 d_ptr mandatory mandatory
DT_RELA 7 d_ptr mandatory optional
DT_RELASZ 8 d_val mandatory optional
DT_RELAENT 9 d_val mandatory optional
DT_STRSZ 10 d_val mandatory mandatory
DT_SYMENT 11 d_val mandatory mandatory
DT_INIT 12 d_ptr optional optional
DT_FINI 13 d_ptr optional optional
DT_SONAME 14 d_val ignored optional
DT_RPATH* 15 d_val optional ignored
DT_SYMBOLIC* 16 ignored ignored optional
DT_REL 17 d_ptr mandatory optional
DT_RELSZ 18 d_val mandatory optional
DT_RELENT 19 d_val mandatory optional
DT_PLTREL 20 d_val optional optional
DT_DEBUG 21 d_ptr optional ignored
DT_TEXTREL* 22 ignored optional optional
DT_JMPREL 23 d_ptr optional optional
DT_BIND_NOW* 24 ignored optional optional
DT_INIT_ARRAY 25 d_ptr optional optional
DT_FINI_ARRAY 26 d_ptr optional optional
DT_INIT_ARRAYSZ 27 d_val optional optional
DT_FINI_ARRAYSZ 28 d_val optional optional
DT_RUNPATH 29 d_val optional optional
DT_FLAGS 30 d_val optional optional
DT_ENCODING 32 unspecified unspecified unspecified
DT_PREINIT_ARRAY 32 d_ptr optional ignored
DT_PREINIT_ARRAYSZ 33 d_val optional ignored
DT_SYMTAB_SHNDX 34 d_ptr optional optional
DT_RELRSZ 35 d_val optional optional
DT_RELR 36 d_ptr optional optional
DT_RELRENT 37 d_val optional optional
DT_SYMTABSZ 39 d_val optional† optional†
DT_LOOS 0x6000000D unspecified unspecified unspecified
DT_HIOS 0x6ffff000 unspecified unspecified unspecified
DT_LOPROC 0x70000000 unspecified unspecified unspecified

continues on next page
54 Chapter 8. Dynamic Linking

ELF Object File Format

Table 8.1 – continued from previous page
Name Value d_un Executable Shared Object
DT_HIPROC 0x7fffffff unspecified unspecified unspecified

* Signifies an entry that has been deprecated.
† DT_HASH is optional if DT_SYMTABSZ is provided.
DT_NULLAn entry with a DT_NULL tag marks the end of the _DYNAMIC array.
DT_NEEDEDThis element holds the string table offset of a null-terminated string, giving the name of a neededlibrary. The offset is an index into the table recorded in the DT_STRTAB code. See Section 8.4,Shared Object Dependencies, for more information about these names. The dynamic array maycontain multiple entries with this type. These entries’ relative order is significant, though theirrelation to entries of other types is not.
DT_PLTRELSZThis element holds the total size, in bytes, of the relocation entries associated with the procedurelinkage table. If an entry of type DT_JMPREL is present, a DT_PLTRELSZmust accompany it.
DT_PLTGOTThis element holds an address associated with the procedure linkage table and/or the globaloffset table. See the psABI supplement for details.
DT_HASHThis element holds the address of the symbol hash table, described in Section 8.5, Hash Table.This hash table refers to the symbol table referenced by the DT_SYMTAB element.

DT_HASH is normally mandatory. The psABI supplement is allowed to override this requirement byproviding an alternative hashmechanism. In such cases, DT_SYMTABSZ, which is normally optional,becomes mandatory.
DT_STRTABThis element holds the address of the string table, described in Chapter 4, String Table. Symbolnames, library names, and other strings reside in this table.
DT_SYMTABThis element holds the address of the dynamic linking symbol table, as described in Chapter 5,Symbol Table, with Elf32_Sym entries for the 32-bit class of files and Elf64_Sym entries for the64-bit class of files.
DT_RELAThis element holds the address of a relocation table, described in Chapter 6, Relocation. Entriesin the table have explicit addends (Elf32_Rela for the 32-bit file class or Elf64_Rela for the 64-bit file class). An object file may have multiple relocation sections. When building the relocationtable for an executable or shared object file, the link editor concatenates those sections to forma single table. Although the sections remain independent in the object file, the dynamic linkersees a single table. When the dynamic linker creates the process image for an executable fileor adds a shared object to the process image, it reads the relocation table and performs theassociated actions. If this element is present, the dynamic structure must also have DT_RELASZand DT_RELAENT elements. When relocation is “mandatory” for a file, either DT_RELA or DT_RELmayoccur (both are permitted but not required).

8.3. Dynamic Section 55

ELF Object File Format

DT_RELASZThis element holds the total size, in bytes, of the DT_RELA relocation table.
DT_RELAENTThis element holds the size, in bytes, of the DT_RELA relocation entry.
DT_STRSZThis element holds the size, in bytes, of the string table.
DT_SYMENTThis element holds the size, in bytes, of a symbol table entry.
DT_INITThis element holds the address of the initialization function, discussed in Section 8.6, Initializationand Termination Functions.
DT_FINIThis element holds the address of the termination function, discussed in Section 8.6, Initializationand Termination Functions.
DT_SONAMEThis element holds the string table offset of a null-terminated string, giving the name of theshared object. The offset is an index into the table recorded in the DT_STRTAB entry. See Sec-tion 8.4, Shared Object Dependencies for more information about these names.
DT_RPATHThis element holds the string table offset of a null-terminated search library search path string dis-cussed in Section 8.4, Shared Object Dependencies. The offset is an index into the table recordedin the DT_STRTAB entry. This entry is deprecated; its use has been superseded by DT_RUNPATH.
DT_SYMBOLICThis element’s presence in a shared object library alters the dynamic linker’s symbol resolution al-gorithm for references within the library. Instead of starting a symbol search with the executablefile, the dynamic linker starts from the shared object itself. If the shared object fails to supplythe referenced symbol, the dynamic linker then searches the executable file and other sharedobjects as usual. This entry is deprecated; its use has been superseded by the DF_SYMBOLIC flag.
DT_RELThis element is similar to DT_RELA, except its table has implicit addends (Elf32_Rel for the 32-bitfile class or Elf64_Rel for the 64-bit file class). If this element is present, the dynamic structuremust also have DT_RELSZ and DT_RELENT elements.
DT_RELSZThis element holds the total size, in bytes, of the DT_REL relocation table.
DT_RELENTThis element holds the size, in bytes, of the DT_REL relocation entry.
DT_PLTRELThis member specifies the type of relocation entry to which the procedure linkage table refers.The d_valmember holds DT_REL or DT_RELA, as appropriate. All relocations in a procedure linkagetable must use the same relocation.
DT_DEBUGThis member is used for debugging. Its contents are not specified for the ABI; programs thataccess this entry are not ABI-conforming.
DT_TEXTRELThis member’s absence signifies that no relocation entry should cause a modification to a non-writable segment, as specified by the segment permissions in the program header table. If thismember is present, one ormore relocation entriesmight requestmodifications to a non-writable
56 Chapter 8. Dynamic Linking

ELF Object File Format

segment, and the dynamic linker can prepare accordingly. This entry is deprecated; its use hasbeen superseded by the DF_TEXTREL flag.
DT_JMPRELIf present, this entry’s d_ptrmember holds the address of relocation entries associated solelywiththe procedure linkage table. Separating these relocation entries lets the dynamic linker ignorethem during process initialization, if lazy binding is enabled. If this entry is present, the relatedentries of types DT_PLTRELSZ and DT_PLTRELmust also be present.
DT_BIND_NOWIf present in a shared object or executable, this entry instructs the dynamic linker to process allrelocations for the object containing this entry before transferring control to the program. Thepresence of this entry takes precedence over a directive to use lazy binding for this object whenspecified through the environment or via dlopen(). This entry is deprecated; its use has beensuperseded by the DF_BIND_NOW flag.
DT_INIT_ARRAYThis element holds the address of the array of pointers to initialization functions, discussed inSection 8.6, Initialization and Termination Functions.
DT_FINI_ARRAYThis element holds the address of the array of pointers to termination functions, discussed inSection 8.6, Initialization and Termination Functions.
DT_INIT_ARRAYSZThis element holds the size in bytes of the array of initialization functions pointed to by the

DT_INIT_ARRAY entry. If an object has a DT_INIT_ARRAY entry, it must also have a DT_INIT_ARRAYSZentry.
DT_FINI_ARRAYSZThis element holds the size in bytes of the array of termination functions pointed to by the

DT_FINI_ARRAY entry. If an object has a DT_FINI_ARRAY entry, it must also have a DT_FINI_ARRAYSZentry.
DT_RUNPATHThis element holds the string table offset of a null-terminated library search path string discussedin Section 8.4, Shared Object Dependencies. The offset is an index into the table recorded in the

DT_STRTAB entry.
DT_FLAGSThis element holds flag values specific to the object being loaded. Each flag value will have thename DF_flag_name. Defined values and their meanings are described below. All other values arereserved.
DT_PREINIT_ARRAYThis element holds the address of the array of pointers to pre-initialization functions, discussedin Section 8.6, Initialization and Termination Functions. The DT_PREINIT_ARRAY table is processedonly in an executable file; it is ignored if contained in a shared object.
DT_PREINIT_ARRAYSZThis element holds the size in bytes of the array of pre-initialization functions pointed to bythe DT_PREINIT_ARRAY entry. If an object has a DT_PREINIT_ARRAY entry, it must also have a

DT_PREINIT_ARRAYSZ entry. As with DT_PREINIT_ARRAY, this entry is ignored if it appears in a sharedobject.
DT_SYMTAB_SHNDXThis element holds the address of the SHT_SYMTAB_SHNDX section associatedwith the dynamic sym-bol table referenced by the DT_SYMTAB element.

8.3. Dynamic Section 57

ELF Object File Format

DT_RELRThis element holds the address of an SHT_RELR relocation table, described in Section 6.2, Rel-ative Relocation Table. This table will hold entries of either Elf32_Relr for the 32-bit file classor Elf64_Relr for the 64-bit file class. If this element is present, the dynamic structure must alsohave DT_RELRSZ and DT_RELRENT elements. During dynamic linking, a DT_RELR element is processedbefore any DT_REL or DT_RELA elements in the same object file.
DT_RELRSZThis element holds the total size, in bytes, of the DT_RELR relocation table.
DT_RELRENTThis element holds the size, in bytes, of the DT_RELR relocation entry.
DT_SYMTABSZThis element holds the size, in bytes, of the DT_SYMTAB dynamic linking symbol table. It must beprovided if the DT_HASH symbol hash table is omitted.
DT_ENCODINGValues greater than or equal to DT_ENCODING and less than DT_LOOS follow the rules for the inter-pretation of the d_un union described above.
DT_LOOS through DT_HIOSValues in this inclusive range are reserved for operating system-specific semantics. All such valuesfollow the rules for the interpretation of the d_un union described above.
DT_LOPROC through DT_HIPROCValues in this inclusive range are reserved for processor-specific semantics. If meanings are spec-ified, the psABI supplement explains them. All such values follow the rules for the interpretationof the d_un union described above.
Except for the DT_NULL element at the end of the array, and the relative order of DT_NEEDED elements,entries may appear in any order. Tag values not appearing in the table are reserved.

Table 8.2: DT_FLAGS values
Name Value
DF_ORIGIN 0x1
DF_SYMBOLIC 0x2
DF_TEXTREL 0x4
DF_BIND_NOW 0x8
DF_STATIC_TLS 0x10

DF_ORIGINThis flag signifies that the object being loaded may make reference to the $ORIGIN substitutionstring (see Section 8.4.1, Substitution Sequences). The dynamic linker must determine the path-name of the object containing this entry when the object is loaded.
DF_SYMBOLICIf this flag is set in a shared object library, the dynamic linker’s symbol resolution algorithm forreferences within the library is changed. Instead of starting a symbol search with the executablefile, the dynamic linker starts from the shared object itself. If the shared object fails to supplythe referenced symbol, the dynamic linker then searches the executable file and other sharedobjects as usual.
DF_TEXTRELIf this flag is not set, no relocation entry should cause a modification to a non-writable segment,as specified by the segment permissions in the program header table. If this flag is set, one or

58 Chapter 8. Dynamic Linking

ELF Object File Format

more relocation entriesmight requestmodifications to a non-writable segment, and the dynamiclinker can prepare accordingly.
DF_BIND_NOWIf set in a shared object or executable, this flag instructs the dynamic linker to process all reloca-tions for the object containing this entry before transferring control to the program. The presenceof this entry takes precedence over a directive to use lazy binding for this object when specifiedthrough the environment or via dlopen().
DF_STATIC_TLSIf set in a shared object or executable, this flag instructs the dynamic linker to reject attempts toload this file dynamically. It indicates that the shared object or executable contains code usinga static thread-local storage scheme. Implementations need not support any form of thread-localstorage.

8.4 Shared Object Dependencies

When the link editor processes an archive library, it extracts library members and copies them into theoutput object file. These statically linked services are available during execution without involving thedynamic linker. Shared objects also provide services, and the dynamic linker must attach the propershared object files to the process image for execution.
When the dynamic linker creates the memory segments for an object file, the dependencies (recordedin DT_NEEDED entries of the dynamic structure) tell what shared objects are needed to supply the pro-gram’s services. By repeatedly connecting referenced shared objects and their dependencies, the dy-namic linker builds a complete process image. When resolving symbolic references, the dynamic linkerexamines the symbol tables with a breadth-first search. That is, it first looks at the symbol table of theexecutable program itself, then at the symbol tables of the DT_NEEDED entries (in order), and then at thesecond level DT_NEEDED entries, and so on. Shared object files must be readable by the process; otherpermissions are not required.
ò Note

Even when a shared object is referenced multiple times in the dependency list, the dynamic linkerwill connect the object only once to the process.
Names in the dependency list are copies either of the DT_SONAME strings or the path names of the sharedobjects used to build the object file. For example, if the link editor builds an executable file using oneshared object with a DT_SONAME entry of lib1 and another shared object library with the path name
/usr/lib/lib2, the executable file will contain lib1 and /usr/lib/lib2 in its dependency list.
If a shared object name has one or more slash (/) characters anywhere in the name, such as /usr/lib/
lib2 or directory/file, the dynamic linker uses that string directly as the path name. If the name hasno slashes, such as lib1, three facilities specify shared object path searching.

• The dynamic array tag DT_RUNPATH gives a string that holds a list of directories, separated by colons(:). For example, the string /home/dir/lib:/home/dir2/lib: tells the dynamic linker to search firstthe directory /home/dir/lib, then /home/dir2/lib, and then the current directory to find depen-dencies.
The set of directories specified by a given DT_RUNPATH entry is used to find only the immediatedependencies of the executable or shared object containing the DT_RUNPATH entry. That is, it isused only for those dependencies contained in the DT_NEEDED entries of the dynamic structurecontaining the DT_RUNPATH entry, itself. One object’s DT_RUNPATH entry does not affect the searchfor any other object’s dependencies.

8.4. Shared Object Dependencies 59

ELF Object File Format

• A variable called LD_LIBRARY_PATH in the process environment may hold a list of directories asabove, optionally followed by a semicolon (;) and another directory list. The following valueswould be equivalent to the previous example:
– LD_LIBRARY_PATH=/home/dir/usr/lib:/home/dir2/usr/lib:

– LD_LIBRARY_PATH=/home/dir/usr/lib;/home/dir2/usr/lib:

– LD_LIBRARY_PATH=/home/dir/usr/lib:/home/dir2/usr/lib:;

Although some programs (such as the link editor) treat the lists before and after the semicolondifferently, the dynamic linker does not. Nevertheless, the dynamic linker accepts the semicolonnotation, with the semantics described previously.
All LD_LIBRARY_PATH directories are searched before those from DT_RUNPATH.

• Finally, if the other two groups of directories fail to locate the desired library, the dynamic linkersearches the default directories, /usr/lib or such other directories as may be specified by thepsABI supplement.
When the dynamic linker is searching for shared objects, it is not a fatal error if an ELF file with thewrong attributes is encountered in the search. Instead, the dynamic linker shall exhaust the search ofall paths before determining that amatching object could not be found. For this determination, the rel-evant attributes are contained in the following ELF header fields: e_ident[EI_DATA], e_ident[EI_CLASS],
e_ident[EI_OSABI], e_ident[EI_ABIVERSION], e_machine, e_type, e_flags and e_version.
ò Note

For security, the dynamic linker ignores LD_LIBRARY_PATH for set-user and set-group ID programs. Itdoes, however, search DT_RUNPATH directories and the default directories. The same restriction maybe applied to processes that havemore thanminimal privileges on systems with installed extendedsecurity mechanisms.

ò Note

A fourth search facility, the dynamic array tag DT_RPATH, has been deprecated. It provides a colon-separated list of directories to search. Directories specified by DT_RPATH are searched before direc-tories specified by LD_LIBRARY_PATH.
If both DT_RPATH and DT_RUNPATH entries appear in a single object’s dynamic array, the dynamic linkerprocesses only the DT_RUNPATH entry.

8.4.1 Substitution Sequences
Within a string provided by dynamic array entries with the DT_NEEDED or DT_RUNPATH tags and in path-names passed as parameters to the dlopen() routine, a dollar sign ($) introduces a substitution se-quence. This sequence consists of the dollar sign immediately followed by either the longest namesequence or a name contained within left and right braces ({) and (}). A name is a sequence of bytesthat start with either a letter or an underscore followed by zero or more letters, digits or underscores.If a dollar sign is not immediately followed by a name or a brace-enclosed name, the behavior of thedynamic linker is unspecified.
If the name is “ORIGIN”, then the substitution sequence is replaced by the dynamic linker with the ab-solute pathname of the directory in which the object containing the substitution sequence originated.

60 Chapter 8. Dynamic Linking

ELF Object File Format

Moreover, the pathname will contain no symbolic links or use of “.” or “..” components. Otherwise(when the name is not “ORIGIN”) the behavior of the dynamic linker is unspecified.
When the dynamic linker loads an object that uses $ORIGIN, it must calculate the pathname of the di-rectory containing the object. Because this calculation can be computationally expensive, implemen-tations may want to avoid the calculation for objects that do not use $ORIGIN. If an object calls dlopen()with a string containing $ORIGIN and does not use $ORIGIN in one if its dynamic array entries, the dy-namic linker may not have calculated the pathname for the object until the dlopen() actually occurs.Since the application may have changed its current working directory before the dlopen() call, the cal-culation may not yield the correct result. To avoid this possibility, an object may signal its intentionto reference $ORIGIN by setting the DF_ORIGIN flag. An implementation may reject an attempt to use
$ORIGINwithin a dlopen() call from an object that did not set the DF_ORIGIN flag and did not use $ORIGINwithin its dynamic array.
ò Note

For security, the dynamic linker does not allow use of $ORIGIN substitution sequences for set-userand set-group ID programs. For such sequences that appear within strings specified by DT_RUNPATHdynamic array entries, the specific search path containing the $ORIGIN sequence is ignored (thoughother search paths in the same string are processed). $ORIGIN sequences within a DT_NEEDED entryor path passed as a parameter to dlopen() are treated as errors. The same restrictions may beapplied to processes that have more than minimal privileges on systems with installed extendedsecurity mechanisms.

8.5 Hash Table

A hash table of Elf32_Word objects supports symbol table access. The same table layout is used forboth the 32-bit and 64-bit file class. Labels appear below to help explain the hash table organization,but they are not part of the specification.
The bucket array contains nbucket entries, and the chain array contains nchain entries; indexes start at0. Both bucket and chain hold symbol table indexes. Chain table entries parallel the symbol table. Thenumber of symbol table entries should equal nchain; so symbol table indexes also select chain tableentries. A hashing function (shown below) accepts a symbol name and returns a value that may beused to compute a bucket index. Consequently, if the hashing function returns the value x for somename, bucket[x%nbucket] gives an index, y, into both the symbol table and the chain table. If the symboltable entry is not the one desired, chain[y] gives the next symbol table entry with the same hash value.One can follow the chain links until either the selected symbol table entry holds the desired name orthe chain entry contains the value STN_UNDEF.

Listing 8.2: Hashing Function
unsigned long
elf_hash(const unsigned char *name)
{

unsigned long h = 0, g;
while (*name)
{

h = (h << 4) + *name++;
if (g = h & 0xf0000000)

h ^= g >> 24;
h &= ~g;

(continues on next page)

8.5. Hash Table 61

ELF Object File Format

nbucket

bucket[0]

bucket[nbucket – 1]

…

chain[0]

chain[nchain – 1]

…

nchain

Figure 8.1: Hash Table
(continued from previous page)

}
return h;

}

8.6 Initialization and Termination Functions

After the dynamic linker has built the process image and performed the relocations, each shared objectand the executable file get the opportunity to execute some initialization functions. All shared objectinitializations happen before the executable file gains control.
Before the initialization functions for any object A is called, the initialization functions for any otherobjects that object A depends on are called. For these purposes, an object A depends on anotherobject B, if B appears in A’s list of needed objects (recorded in the DT_NEEDED entries of the dynamicstructure). The order of initialization for circular dependencies is undefined.
The initialization of objects occurs by recursing through the needed entries of each object. The ini-tialization functions for an object are invoked after the needed entries for that object have been pro-cessed. The order of processing among the entries of a particular list of needed objects is unspecified.
ò Note

Each psABI supplement may optionally further restrict the algorithm used to determine the orderof initialization. Any such restriction, however, may not conflict with the rules described by thisspecification.
The following example illustrates two of the possible correct orderings which can be generated for theexample NEEDED lists. In this example the a.out is dependent on b, d, and e. b is dependent on d and
62 Chapter 8. Dynamic Linking

ELF Object File Format

f, while d is dependent on e and g. From this information a dependency graph can be drawn. Theabove algorithm on initialization will then allow the following specified initialization orderings (amongothers).

NEEDED Lists Dependency Graph

a.out

b

b

d

e

d

d

f

e

g

a.out

b d e

f g

Example Orderings

e a.outbd fg

g a.outbdef

Figure 8.2: Initialization Ordering Example
Similarly, shared objects and executable files may have termination functions, which are executedwith the atexit()mechanism after the base process begins its termination sequence. The terminationfunctions for any object A must be called before the termination functions for any other objects thatobject A depends on. For these purposes, an object A depends on another object B, if B appears inA’s list of needed objects (recorded in the DT_NEEDED entries of the dynamic structure). The order oftermination for circular dependencies is undefined.
Finally, an executable file may have pre-initialization functions. These functions are executed after thedynamic linker has built the process image and performed relocations but before any shared objectinitialization functions. Pre-initialization functions are not permitted in shared objects.
8.6. Initialization and Termination Functions 63

ELF Object File Format

ò Note

Complete initialization of system libraries may not have occurred when pre-initializations are exe-cuted, so some features of the system may not be available to pre-initialization code. In general,use of pre-initialization code can be considered portable only if it has no dependencies on systemlibraries.
The dynamic linker ensures that it will not execute any initialization, pre-initialization, or terminationfunctions more than once.
Shared objects designate their initialization and termination code in one of two ways. First, they mayspecify the address of a function to execute via the DT_INIT and DT_FINI entries in the dynamic struc-ture, described in Section 8.3, Dynamic Section.
ò Note

Note that the address of a function need not be the same as a pointer to a function as defined bythe psABI supplement.
Shared objects may also (or instead) specify the address and size of an array of function pointers.Each element of this array is a pointer to a function to be executed by the dynamic linker. Each arrayelement is the size of a pointer in the programming model followed by the object containing the array.The address of the array of initialization function pointers is specified by the DT_INIT_ARRAY entry inthe dynamic structure. Similarly, the address of the array of pre-initialization functions is specified by
DT_PREINIT_ARRAY and the address of the array of termination functions is specified by DT_FINI_ARRAY.The size of each array is specified by the DT_INIT_ARRAYSZ, DT_PREINIT_ARRAYSZ, and DT_FINI_ARRAYSZentries.
ò Note

The addresses contained in the initialization and termination arrays are function pointers as definedby the psABI supplement for each processor. On some architectures, a function pointer may notcontain the actual address of the function.
The functions pointed to in the arrays specified by DT_INIT_ARRAY and by DT_PREINIT_ARRAY are executedby the dynamic linker in the same order in which their addresses appear in the array; those specifiedby DT_FINI_ARRAY are executed in reverse order.
If an object contains both DT_INIT and DT_INIT_ARRAY entries, the function referenced by the DT_INITentry is processed before those referenced by the DT_INIT_ARRAY entry for that object. If an objectcontains both DT_FINI and DT_FINI_ARRAY entries, the functions referenced by the DT_FINI_ARRAY entryare processed before the one referenced by the DT_FINI entry for that object.
ò Note

Although the atexit() termination processing normally will be done, it is not guaranteed to haveexecuted upon process death. In particular, the process will not execute the termination processingif it calls _exit() or if the process dies because it received a signal that it neither caught nor ignored.
The psABI supplement for each processor specifies whether the dynamic linker is responsible for call-ing the executable file’s initialization function or registering the executable file’s termination function
64 Chapter 8. Dynamic Linking

ELF Object File Format

with atexit(). Termination functions specified by users via the atexit()mechanismmust be executedbefore any termination functions of shared objects.

8.6. Initialization and Termination Functions 65

ELF Object File Format

66 Chapter 8. Dynamic Linking

Appendix A

Assigned Machine Values

The table below lists all assigned e_machine values. This list is updated as new values are assigned,without updating the document version number.
For the most up-to-date list of values, please refer to gabi.xinuos.com.
To request assignment of an e_machine value for a new architecture, please email your request to reg-istry@xinuos.com. Please include your contact information (preferably a company email address, nota free email provider), the name of the company, the name of the architecture with a brief description,your preferred EM_xxx name, and a link (if available) to any public information about the architecture.

Table A.1: e_machine Values
Name Value Meaning
EM_NONE 0 No machine
EM_M32 1 AT&T WE 32100
EM_SPARC 2 SPARC
EM_386 3 Intel 80386
EM_68K 4 Motorola 68000
EM_88K 5 Motorola 88000
EM_IAMCU 6 Intel MCU
EM_860 7 Intel 80860
EM_MIPS 8 MIPS I Architecture
EM_S370 9 IBM System/370 Processor
EM_MIPS_RS3_LE 10 MIPS RS3000 Little-endianreserved 11–14 Reserved for future use
EM_PARISC 15 Hewlett-Packard PA-RISCreserved 16 Reserved for future use
EM_VPP500 17 Fujitsu VPP500
EM_SPARC32PLUS 18 Enhanced instruction set SPARC
EM_960 19 Intel 80960
EM_PPC 20 PowerPC
EM_PPC64 21 64-bit PowerPC
EM_S390 22 IBM System/390 Processor
EM_SPU 23 IBM SPU/SPCreserved 24–35 Reserved for future use
EM_V800 36 NEC V800
EM_FR20 37 Fujitsu FR20

continues on next page
67

https://gabi.xinuos.com
mailto:registry@xinuos.com
mailto:registry@xinuos.com

ELF Object File Format

Table A.1 – continued from previous page
Name Value Meaning
EM_RH32 38 TRW RH-32
EM_RCE 39 Motorola RCE
EM_ARM 40 ARM 32-bit architecture (AARCH32)
EM_ALPHA 41 Digital Alpha
EM_SH 42 Hitachi SH
EM_SPARCV9 43 SPARC Version 9
EM_TRICORE 44 Siemens TriCore embedded processor
EM_ARC 45 Argonaut RISC Core, Argonaut Technologies Inc.
EM_H8_300 46 Hitachi H8/300
EM_H8_300H 47 Hitachi H8/300H
EM_H8S 48 Hitachi H8S
EM_H8_500 49 Hitachi H8/500
EM_IA_64 50 Intel IA-64 processor architecture
EM_MIPS_X 51 Stanford MIPS-X
EM_COLDFIRE 52 Motorola ColdFire
EM_68HC12 53 Motorola M68HC12
EM_MMA 54 Fujitsu MMA Multimedia Accelerator
EM_PCP 55 Siemens PCP
EM_NCPU 56 Sony nCPU embedded RISC processor
EM_NDR1 57 Denso NDR1 microprocessor
EM_STARCORE 58 Motorola Star*Core processor
EM_ME16 59 Toyota ME16 processor
EM_ST100 60 STMicroelectronics ST100 processor
EM_TINYJ 61 Advanced Logic Corp. TinyJ embedded processorfamily
EM_X86_64 62 AMD x86-64 architecture
EM_PDSP 63 Sony DSP Processor
EM_PDP10 64 Digital Equipment Corp. PDP-10
EM_PDP11 65 Digital Equipment Corp. PDP-11
EM_FX66 66 Siemens FX66 microcontroller
EM_ST9PLUS 67 STMicroelectronics ST9+ 8/16 bit microcontroller
EM_ST7 68 STMicroelectronics ST7 8-bit microcontroller
EM_68HC16 69 Motorola MC68HC16 Microcontroller
EM_68HC11 70 Motorola MC68HC11 Microcontroller
EM_68HC08 71 Motorola MC68HC08 Microcontroller
EM_68HC05 72 Motorola MC68HC05 Microcontroller
EM_SVX 73 Silicon Graphics SVx
EM_ST19 74 STMicroelectronics ST19 8-bit microcontroller
EM_VAX 75 Digital VAX
EM_CRIS 76 Axis Communications 32-bit embedded processor
EM_JAVELIN 77 Infineon Technologies 32-bit embedded processor
EM_FIREPATH 78 Element 14 64-bit DSP Processor
EM_ZSP 79 LSI Logic 16-bit DSP Processor
EM_MMIX 80 Donald Knuth’s educational 64-bit processor
EM_HUANY 81 Harvard University machine-independent object files
EM_PRISM 82 SiTera Prism
EM_AVR 83 Atmel AVR 8-bit microcontroller
EM_FR30 84 Fujitsu FR30
EM_D10V 85 Mitsubishi D10V
EM_D30V 86 Mitsubishi D30V

continues on next page
68 Appendix A. Assigned Machine Values

ELF Object File Format

Table A.1 – continued from previous page
Name Value Meaning
EM_V850 87 NEC v850
EM_M32R 88 Mitsubishi M32R
EM_MN10300 89 Matsushita MN10300
EM_MN10200 90 Matsushita MN10200
EM_PJ 91 picoJava
EM_OPENRISC 92 OpenRISC 32-bit embedded processor
EM_ARC_COMPACT 93 ARC International ARCompact processor (oldspelling/synonym: EM_ARC_A5)
EM_XTENSA 94 Tensilica Xtensa Architecture
EM_VIDEOCORE 95 Alphamosaic VideoCore processor
EM_TMM_GPP 96 Thompson Multimedia General Purpose Processor
EM_NS32K 97 National Semiconductor 32000 series
EM_TPC 98 Tenor Network TPC processor
EM_SNP1K 99 Trebia SNP 1000 processor
EM_ST200 100 STMicroelectronics (www.st.com) ST200microcontroller
EM_IP2K 101 Ubicom IP2xxx microcontroller family
EM_MAX 102 MAX Processor
EM_CR 103 National Semiconductor CompactRISC microprocessor
EM_F2MC16 104 Fujitsu F2MC16
EM_MSP430 105 Texas Instruments embedded microcontroller msp430
EM_BLACKFIN 106 Analog Devices Blackfin (DSP) processor
EM_SE_C33 107 S1C33 Family of Seiko Epson processors
EM_SEP 108 Sharp embedded microprocessor
EM_ARCA 109 Arca RISC Microprocessor
EM_UNICORE 110 Microprocessor series from PKU-Unity Ltd. and MPRCof Peking University
EM_EXCESS 111 eXcess: 16/32/64-bit configurable embedded CPU
EM_DXP 112 Icera Semiconductor Inc. Deep Execution Processor
EM_ALTERA_NIOS2 113 Altera Nios II soft-core processor
EM_CRX 114 National Semiconductor CompactRISC CRXmicroprocessor
EM_XGATE 115 Motorola XGATE embedded processor
EM_C166 116 Infineon C16x/XC16x processor
EM_M16C 117 Renesas M16C series microprocessors
EM_DSPIC30F 118 Microchip Technology dsPIC30F Digital SignalController
EM_CE 119 Freescale Communication Engine RISC core
EM_M32C 120 Renesas M32C series microprocessorsreserved 121–130 Reserved for future use
EM_TSK3000 131 Altium TSK3000 core
EM_RS08 132 Freescale RS08 embedded processor
EM_SHARC 133 Analog Devices SHARC family of 32-bit DSP processors
EM_ECOG2 134 Cyan Technology eCOG2 microprocessor
EM_SCORE7 135 Sunplus S+core7 RISC processor
EM_DSP24 136 New Japan Radio (NJR) 24-bit DSP Processor
EM_VIDEOCORE3 137 Broadcom VideoCore III processor
EM_LATTICEMICO32 138 RISC processor for Lattice FPGA architecture
EM_SE_C17 139 Seiko Epson C17 family
EM_TI_C6000 140 The Texas Instruments TMS320C6000 DSP family

continues on next page
69

ELF Object File Format

Table A.1 – continued from previous page
Name Value Meaning
EM_TI_C2000 141 The Texas Instruments TMS320C2000 DSP family
EM_TI_C5500 142 The Texas Instruments TMS320C55x DSP family
EM_TI_ARP32 143 Texas Instruments Application Specific RISC Processor,32bit fetch
EM_TI_PRU 144 Texas Instruments Programmable Realtime Unitreserved 145–159 Reserved for future use
EM_MMDSP_PLUS 160 STMicroelectronics 64bit VLIW Data Signal Processor
EM_CYPRESS_M8C 161 Cypress M8C microprocessor
EM_R32C 162 Renesas R32C series microprocessors
EM_TRIMEDIA 163 NXP Semiconductors TriMedia architecture family
EM_QDSP6 164 QUALCOMM DSP6 Processor
EM_8051 165 Intel 8051 and variants
EM_STXP7X 166 STMicroelectronics STxP7x family of configurable andextensible RISC processors
EM_NDS32 167 Andes Technology compact code size embedded RISCprocessor family
EM_ECOG1 168 Cyan Technology eCOG1X family
EM_ECOG1X 168 Cyan Technology eCOG1X family
EM_MAXQ30 169 Dallas Semiconductor MAXQ30 Core Micro-controllers
EM_XIMO16 170 New Japan Radio (NJR) 16-bit DSP Processor
EM_MANIK 171 M2000 Reconfigurable RISC Microprocessor
EM_CRAYNV2 172 Cray Inc. NV2 vector architecture
EM_RX 173 Renesas RX family
EM_METAG 174 Imagination Technologies META processorarchitecture
EM_MCST_ELBRUS 175 MCST Elbrus general purpose hardware architecture
EM_ECOG16 176 Cyan Technology eCOG16 family
EM_CR16 177 National Semiconductor CompactRISC CR16 16-bitmicroprocessor
EM_ETPU 178 Freescale Extended Time Processing Unit
EM_SLE9X 179 Infineon Technologies SLE9X core
EM_L10M 180 Intel L10M
EM_K10M 181 Intel K10Mreserved 182 Reserved for future Intel use
EM_AARCH64 183 ARM 64-bit architecture (AARCH64)reserved 184 Reserved for future ARM use
EM_AVR32 185 Atmel Corporation 32-bit microprocessor family
EM_STM8 186 STMicroeletronics STM8 8-bit microcontroller
EM_TILE64 187 Tilera TILE64 multicore architecture family
EM_TILEPRO 188 Tilera TILEPro multicore architecture family
EM_MICROBLAZE 189 Xilinx MicroBlaze 32-bit RISC soft processor core
EM_CUDA 190 NVIDIA CUDA architecture
EM_TILEGX 191 Tilera TILE-Gx multicore architecture family
EM_CLOUDSHIELD 192 CloudShield architecture family
EM_COREA_1ST 193 KIPO-KAIST Core-A 1st generation processor family
EM_COREA_2ND 194 KIPO-KAIST Core-A 2nd generation processor family
EM_ARC_COMPACT2 195 Synopsys ARCompact V2
EM_OPEN8 196 Open8 8-bit RISC soft processor core
EM_RL78 197 Renesas RL78 family
EM_VIDEOCORE5 198 Broadcom VideoCore V processor

continues on next page
70 Appendix A. Assigned Machine Values

ELF Object File Format

Table A.1 – continued from previous page
Name Value Meaning
EM_78KOR 199 Renesas 78KOR family
EM_56800EX 200 Freescale 56800EX Digital Signal Controller (DSC)
EM_BA1 201 Beyond BA1 CPU architecture
EM_BA2 202 Beyond BA2 CPU architecture
EM_XCORE 203 XMOS xCORE processor family
EM_MCHP_PIC 204 Microchip 8-bit PIC(r) family
EM_INTEL205 205 Reserved by Intel
EM_INTEL206 206 Reserved by Intel
EM_INTEL207 207 Reserved by Intel
EM_INTEL208 208 Reserved by Intel
EM_INTEL209 209 Reserved by Intel
EM_KM32 210 KM211 KM32 32-bit processor
EM_KMX32 211 KM211 KMX32 32-bit processor
EM_KMX16 212 KM211 KMX16 16-bit processor
EM_KMX8 213 KM211 KMX8 8-bit processor
EM_KVARC 214 KM211 KVARC processor
EM_CDP 215 Paneve CDP architecture family
EM_COGE 216 Cognitive Smart Memory Processor
EM_COOL 217 Bluechip Systems CoolEngine
EM_NORC 218 Nanoradio Optimized RISC
EM_CSR_KALIMBA 219 CSR Kalimba architecture family
EM_Z80 220 Zilog Z80
EM_VISIUM 221 Controls and Data Services VISIUMcore processor
EM_FT32 222 FTDI Chip FT32 high performance 32-bit RISCarchitecture
EM_MOXIE 223 Moxie processor family
EM_AMDGPU 224 AMD GPU architecturereserved 225–242 Reserved for future use
EM_RISCV 243 RISC-V
EM_LANAI 244 Lanai processor
EM_CEVA 245 CEVA Processor Architecture Family
EM_CEVA_X2 246 CEVA X2 Processor Family
EM_BPF 247 Linux BPF – in-kernel virtual machine
EM_GRAPHCORE_IPU 248 Graphcore Intelligent Processing Unit
EM_IMG1 249 Imagination Technologies
EM_NFP 250 Netronome Flow Processor (NFP)
EM_VE 251 NEC Vector Engine
EM_CSKY 252 C-SKY processor family
EM_ARC_COMPACT3_64 253 Synopsys ARCv2.3 64-bit
EM_MCS6502 254 MOS Technology MCS 6502 processor
EM_ARC_COMPACT3 255 Synopsys ARCv2.3 32-bit
EM_KVX 256 Kalray VLIW core of the MPPA processor family
EM_65816 257 WDC 65816/65C816
EM_LOONGARCH 258 Loongson Loongarch
EM_KF32 259 ChipON KungFu32
EM_U16_U8CORE 260 LAPIS nX-U16/U8
EM_TACHYUM 261 Reserved for Tachyum processor
EM_56800EF 262 NXP 56800EF Digital Signal Controller (DSC)
EM_SBF 263 Solana Bytecode Format
EM_AIENGINE 264 AMD/Xilinx AIEngine architecture

continues on next page
71

ELF Object File Format

Table A.1 – continued from previous page
Name Value Meaning
EM_SIMA_MLA 265 SiMa MLA
EM_BANG 266 Cambricon BANG
EM_LOONGGPU 267 Loongson LoongGPU
EM_SW64 268 Wuxi Institute of Advanced Technology SW64
EM_AIECTRLCODE 269 AMD/Xilinx AIEngine ctrlcode

72 Appendix A. Assigned Machine Values

Appendix B

Assigned OSABI Values

The table below lists all assigned EI_OSABI values. This list is updated as new values are assigned,without updating the document version number.
For the most up-to-date list of values, please refer to gabi.xinuos.com.
Values in the architecture-specific value range may be used for a specific e_machine value, without reg-istration. It is advisable to coordinate with other potential users of that architecture to avoid conflicts.
To request assignment of an EI_OSABI value for a new OSABI, please email your request to reg-istry@xinuos.com. Please include your contact information (preferably a company email address, nota free email provider), the name of the company, the name of the operating system with a brief de-scription, your preferred ELFOSABI_xxx name, and a link (if available) to any public information aboutthe OS.

Table B.1: EI_OSABI Values
Name Value Meaning
ELFOSABI_NONE 0 No extensions or unspecified
ELFOSABI_HPUX 1 Hewlett-Packard HP-UX
ELFOSABI_NETBSD 2 NetBSD
ELFOSABI_GNU 3 GNU
ELFOSABI_LINUX 3 Linux (historical—alias for ELFOSABI_GNU)
ELFOSABI_SOLARIS 6 Sun Solaris
ELFOSABI_AIX 7 AIX
ELFOSABI_IRIX 8 IRIX
ELFOSABI_FREEBSD 9 FreeBSD
ELFOSABI_TRU64 10 Compaq TRU64 UNIX
ELFOSABI_MODESTO 11 Novell Modesto
ELFOSABI_OPENBSD 12 Open BSD
ELFOSABI_OPENVMS 13 Open VMS
ELFOSABI_NSK 14 Hewlett-Packard Non-Stop Kernel
ELFOSABI_AROS 15 Amiga Research OS
ELFOSABI_FENIXOS 16 The FenixOS highly scalable multi-core OS
ELFOSABI_CLOUDABI 17 Nuxi CloudABI
ELFOSABI_OPENVOS 18 Stratus Technologies OpenVOS

64-255 Architecture-specific value range

73

https://gabi.xinuos.com
mailto:registry@xinuos.com
mailto:registry@xinuos.com

ELF Object File Format

74 Appendix B. Assigned OSABI Values

Appendix C

Revision History

First Draft (Published May 14, 1998)
Second Draft (Published May 3, 1999)

• New values introduced for ELF header e_machine field.
• Revised language for EI_OSABI and EI_ABIVERSION fields of the ELF header e_ident array.
• New section flags SHF_MERGE and SHF_STRINGS added.
• New values added to a symbol table entry’s st_other field to describe a symbol’s visibility.
• New dynamic section tags DT_RUNPATH and DT_FLAGS added. Deprecated dynamic section tag
DT_RPATH.

• New semantics for shared object path searching, including new “Substitution Sequences”.
Third Draft (Published May 12, 1999)

• A new symbol type, STT_COMMON, has been added.
• Added language restricting the types of objects that may contain symbols with the section index
SHN_COMMON.

• Dynamic section entries DT_SYMBOLIC, DT_TEXTREL and DT_BIND_NOW have been deprecated. New
DT_FLAGS values DF_SYMBOLIC, DF_TEXTREL and DF_BIND_NOW have been added as replacements.

• New rules for interpreting dynamic section tag encodings have been added.
• The OS and processor specific ranges for DT_FLAGS have been removed.
• The language motivating the use of DF_ORIGIN has been changed.

Fourth Draft (Published July 6, 1999)
• New language has been added warning about the use of WEAK symbols in application programs.
• New rules have been defined for composition of consecutive relocation entries that referencethe same location.
• Language has been added clarifying the order of execution for functions specified by initializationand termination arrays.

Fifth Draft (Published July 21, 1999)
• New section types and section names added for init arrays, fini arrays, and pre-init arrays.

75

ELF Object File Format

• An object may now have both DT_INIT and DT_INIT_ARRAY entries (and both DT_FINI and
DT_FINI_ARRAY entries). The relative execution order is specified.

• The language describing the order of execution for termination functions has been revised.
• A new pre-initialization mechanism has been added.
• It is now up to the psABI supplement for each processor to specify whether the dynamic linkermust invoke the executable file’s init and fini routines.

Sixth Draft (Published September 14, 1999)
• Changed the numbering of some new section types previously added to account for type num-bers already in use in particular vendor implementations.
• Increased the number of section flag bits available in the OS specific range.

Seventh Draft (Published October 4, 1999)
• Changed the values used for some new section attribute flags to accommodate platforms alreadyusing previously assigned values.
• Added new section attribute flags SHF_INFO_LINK, SHF_LINK_ORDER, and SHF_OS_NONCONFORMING

• Added rules for linkers when linking sections with unrecognized types or flags.
Eighth Draft (Published March 30, 2000)

• Added the concept of section groups.
• Removed the macros for ELF32_ST_OTHER and ELF64_ST_OTHER.

Ninth Draft (Published March 30, 2000)
• Added language clarifying the semantics of symbols marked as STV_PROTECTED.
• Added language clarifying the contents of the initialization and termination arrays.

Tenth Draft (Published 22 June 2000)
• Added a sentence spelling out the behavior when resolving a symbol to a STV_PROTECTED definitionfrom a shared object.
• Added support for more than 65,000 sections in the ELF header, and with SHT_SYMTAB_SHNDX sec-tions, and in symbol tables.

Eleventh Draft (Published 24 April 2001)
• Updated table of EM_* entries.
• Added GRP_MASKOS and GRP_MASKPROC. Changed section group description in a few ways, clarifyingsome fuzzy points and rewriting the rules for symbols referencing into section groups.
• Changed the warning about using weak to be stronger.
• Reworded the EI_OSABI byte description to make its use clearer.
• Added the table of now generic EI_OSABI values.
• Added SHF_TLS, PT_TLS and its contents, DF_STATIC_TLS, STT_TLS, .tbss, and .tdata.
• Changed the rules for SHT_SYMTAB_SHNDX contents to require 0 when the corresponding st_shndxfield is not SHN_XINDEX.

Twelfth Draft (Published 26 March 2007)
• Updated table of EM_* entries.

Thirteenth Draft (Published 03 November 2009)
76 Appendix C. Revision History

ELF Object File Format

• Updated table of EM_* entries.
• Added ELFOSABI_FENIXOS to the EI_OSABI values.
• Added ELFOSABI_GNU to the EI_OSABI values; aliased to ELFOSABI_LINUX.

Fourteenth Draft (Published 10 June 2013)
• Added SHF_COMPRESSED to the Section Attribute Flags.
• Updated table of EM_* entries.

Fifteenth Draft (Published 23 July 2015)
• Clarified the description of SHT_SYMTAB_SHNDX; allow usage with any symbol table section.
• Added DT_SYMTAB_SHNDX to the Dynamic Array Tags.

Version 4.2 (Published 2025)
• Converted to ReStructuredText.
• ELF specification is now separate from the gABI document.
• Removed empty placeholders for psABI sections.

Version 4.3 (DRAFT)
• Added extra requirements for SHF_LINKORDER flag.
• Added relative relocation table (Elf32_Relr and Elf64_Relr).
• Changed the symbol visibility attribute to use the lower 3 bits of st_other (instead of 2 bits).
• Added DT_SYMTABSZ entry, and made DT_HASH optional if DT_SYMTABSZ is provided.
• Changed SHF_COMPRESSED to allow with SHF_ALLOC sections in ET_REL objects.
• Added ELFCOMPRESS_ZSTD compression algorithm.

77

	Foreword
	Introduction
	File Format
	Data Representation
	Extensibility
	Required Features

	ELF Header
	Contents of the ELF Header
	ELF Identification
	Data Encoding

	Sections
	Special Section Indexes
	Section Header Table Entry
	Section Type
	Section Flags
	The sh_link and sh_info Fields
	First Section Header Table Entry
	Compressed Sections
	Rules for Linking Unrecognized Sections
	Section Groups
	Special Sections

	String Table
	Symbol Table
	Symbol Table Entry
	Symbol Binding
	Symbol Type
	Symbol Visibility
	Section Index
	First Symbol Table Entry
	Symbol Value

	Relocation
	Relocation Entry
	Relative Relocation Table

	Program Loading
	Program Header Entry
	Segment Types
	Base Address
	Segment Permissions
	Segment Contents
	Note Sections
	Thread-Local Storage

	Dynamic Linking
	Program Interpreter
	Dynamic Linker
	Dynamic Section
	Shared Object Dependencies
	Substitution Sequences

	Hash Table
	Initialization and Termination Functions

	 Assigned Machine Values
	 Assigned OSABI Values
	 Revision History

